Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Lancet Infect Dis ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39276782

RESUMO

BACKGROUND: The emergence of SARS-CoV-2 variants and COVID-19 vaccination have resulted in complex exposure histories. Rapid assessment of the effects of these exposures on neutralising antibodies against SARS-CoV-2 infection is crucial for informing vaccine strategy and epidemic management. We aimed to investigate heterogeneity in individual-level and population-level antibody kinetics to emerging variants by previous SARS-CoV-2 exposure history, to examine implications for real-time estimation, and to examine the effects of vaccine-campaign timing. METHODS: Our Bayesian hierarchical model of antibody kinetics estimated neutralising-antibody trajectories against a panel of SARS-CoV-2 variants quantified with a live virus microneutralisation assay and informed by individual-level COVID-19 vaccination and SARS-CoV-2 infection histories. Antibody titre trajectories were modelled with a piecewise linear function that depended on the key biological quantities of an initial titre value, time the peak titre is reached, set-point time, and corresponding rates of increase and decrease for gradients between two timing parameters. All process parameters were estimated at both the individual level and the population level. We analysed data from participants in the University College London Hospitals-Francis Crick Institute Legacy study cohort (NCT04750356) who underwent surveillance for SARS-CoV-2 either through asymptomatic mandatory occupational health screening once per week between April 1, 2020, and May 31, 2022, or symptom-based testing between April 1, 2020, and Feb 1, 2023. People included in the Legacy study were either Crick employees or health-care workers at three London hospitals, older than 18 years, and gave written informed consent. Legacy excluded people who were unable or unwilling to give informed consent and those not employed by a qualifying institution. We segmented data to include vaccination events occurring up to 150 days before the emergence of three variants of concern: delta, BA.2, and XBB 1.5. We split the data for each wave into two categories: real-time and retrospective. The real-time dataset contained neutralising-antibody titres collected up to the date of emergence in each wave; the retrospective dataset contained all samples until the next SARS-CoV-2 exposure of each individual, whether vaccination or infection. FINDINGS: We included data from 335 participants in the delta wave analysis, 223 (67%) of whom were female and 112 (33%) of whom were male (median age 40 years, IQR 22-58); data from 385 participants in the BA.2 wave analysis, 271 (70%) of whom were female and 114 (30%) of whom were male (41 years, 22-60); and data from 248 participants in the XBB 1.5 wave analysis, 191 (77%) of whom were female, 56 (23%) of whom were male, and one (<1%) of whom preferred not to say (40 years, 21-59). Overall, we included 968 exposures (vaccinations) across 1895 serum samples in the model. For the delta wave, we estimated peak titre values as 490·0 IC50 (95% credible interval 224·3-1515·9) for people with no previous infection and as 702·4 IC50 (300·8-2322·7) for people with a previous infection before omicron; the delta wave did not include people with a previous omicron infection. For the BA.2 wave, we estimated peak titre values as 858·1 IC50 (689·8-1363·2) for people with no previous infection, 1020·7 IC50 (725·9-1722·6) for people with a previous infection before omicron, and 1422·0 IC50 (679·2-3027·3) for people with a previous omicron infection. For the XBB 1.5 wave, we estimated peak titre values as 703·2 IC50 (415·0-3197·8) for people with no previous infection, 1215·9 IC50 (511·6-7338·7) for people with a previous infection before omicron, and 1556·3 IC50 (757·2-7907·9) for people with a previous omicron infection. INTERPRETATION: Our study shows the feasibility of real-time estimation of antibody kinetics before SARS-CoV-2 variant emergence. This estimation is valuable for understanding how specific combinations of SARS-CoV-2 exposures influence antibody kinetics and for examining how COVID-19 vaccination-campaign timing could affect population-level immunity to emerging variants. FUNDING: Wellcome Trust, National Institute for Health Research University College London Hospitals Biomedical Research Centre, UK Research and Innovation, UK Medical Research Council, Francis Crick Institute, and Genotype-to-Phenotype National Virology Consortium.

2.
J Biol Inorg Chem ; 29(6): 573-582, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39198276

RESUMO

A series of biotin-functionalized transition metal complexes was prepared by iClick reaction from the corresponding azido complexes with a novel alkyne-functionalized biotin derivative ([Au(triazolatoR,R')(PPh3)], [Pt(dpb)(triazolatoR,R')], [Pt(triazolatoR,R')(terpy)]PF6, and [Ir(ppy)(triazolatoR,R')(terpy)]PF6 with dpb = 1,3-di(2-pyridyl)benzene, ppy = 2-phenylpyridine, and terpy = 2,2':6',2''-terpyridine and R = C6H5, R' = biotin). The complexes were compared to reference compounds lacking the biotin moiety. The binding affinity toward avidin and streptavidin was evaluated with the HABA assay as well as isothermal titration calorimetry (ITC). All compounds exhibit the same binding stoichiometry of complex-to-avidin of 4:1, but the ITC results show that the octahedral Ir(III) compound exhibits a higher binding affinity than the square-planar Pt(II) complex. The antibacterial activity of the compounds was evaluated on a series of Gram-negative and Gram-positive bacterial strains. In particular, the neutral Au(I) and Pt(II) complexes showed significant antibacterial activity against Staphylococcus aureus and Enterococcus faecium at very low micromolar concentrations. The cytotoxicity against a range of eukaryotic cell lines was studied and revealed that the octahedral Ir(III) complex was non-toxic, while the square-planar Pt(II) and linear Au(I) complexes displayed non-selective micromolar activity.


Assuntos
Antibacterianos , Biotina , Ouro , Irídio , Testes de Sensibilidade Microbiana , Platina , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Biotina/química , Ouro/química , Ouro/farmacologia , Irídio/química , Irídio/farmacologia , Platina/química , Platina/farmacologia , Humanos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Staphylococcus aureus/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade
6.
Elife ; 102021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34323691

RESUMO

Background: The degree of heterotypic immunity induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains is a major determinant of the spread of emerging variants and the success of vaccination campaigns, but remains incompletely understood. Methods: We examined the immunogenicity of SARS-CoV-2 variant B.1.1.7 (Alpha) that arose in the United Kingdom and spread globally. We determined titres of spike glycoprotein-binding antibodies and authentic virus neutralising antibodies induced by B.1.1.7 infection to infer homotypic and heterotypic immunity. Results: Antibodies elicited by B.1.1.7 infection exhibited significantly reduced recognition and neutralisation of parental strains or of the South Africa variant B.1.351 (Beta) than of the infecting variant. The drop in cross-reactivity was significantly more pronounced following B.1.1.7 than parental strain infection. Conclusions: The results indicate that heterotypic immunity induced by SARS-CoV-2 variants is asymmetric. Funding: This work was supported by the Francis Crick Institute and the Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/epidemiologia , Reações Cruzadas , Humanos , Pais , África do Sul/epidemiologia , Glicoproteína da Espícula de Coronavírus , Reino Unido/epidemiologia
9.
Bioorg Med Chem ; 28(1): 115209, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31757681

RESUMO

Heterogeneity in disease mechanisms between genetically distinct patients contributes to high attrition rates in late stage clinical drug development. New personalized medicine strategies aim to identify predictive biomarkers which stratify patients most likely to respond to a particular therapy. However, for complex multifactorial diseases not characterized by a single genetic driver, empirical approaches to identifying predictive biomarkers and the most promising therapies for personalized medicine are required. In vitro pharmacogenomics seeks to correlate in vitro drug sensitivity testing across panels of genetically distinct cell models with genomic, gene expression or proteomic data to identify predictive biomarkers of drug response. However, the vast majority of in vitro pharmacogenomic studies performed to date are limited to dose-response screening upon a single viability assay endpoint. In this article we describe the application of multiparametric high content phenotypic screening and the theta comparative cell scoring method to quantify and rank compound hits, screened at a single concentration, which induce a broad variety of divergent phenotypic responses between distinct breast cancer cell lines. High content screening followed by transcriptomic pathway analysis identified serotonin receptor modulators which display selective activity upon breast cancer cell cycle and cytokine signaling pathways correlating with inhibition of cell growth and survival. These methods describe a new evidence-led approach to rapidly identify compounds which display distinct response between different cell types. The results presented also warrant further investigation of the selective activity of serotonin receptor modulators upon breast cancer cell growth and survival as a potential drug repurposing opportunity.


Assuntos
Antineoplásicos/química , Citocinas/metabolismo , Receptores de Serotonina/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Farmacogenética , Receptores de Serotonina/química , Transdução de Sinais/efeitos dos fármacos , Triflupromazina/química , Triflupromazina/metabolismo , Triflupromazina/farmacologia
10.
Adv Exp Med Biol ; 1188: 203-226, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31820390

RESUMO

Since its inception as a scalable and cost-effective method for precise quantification of the abundance of multiple protein analytes and post-translational epitopes across large sample sets, reverse phase protein array (RPPA) has been utilized as a drug discovery tool. Key RPPA drug discovery applications include primary screening of abundance or activation state of nominated protein targets, secondary screening for toxicity and selectivity, mechanism-of-action profiling, biomarker discovery, and drug combination discovery. In recent decades, drug discovery strategies have evolved dramatically in response to continual advances in technology platforms supporting high-throughput screening, structure-based drug design, new therapeutic modalities, and increasingly more complex and disease-relevant cell-based and in vivo preclinical models of disease. Advances in biological laboratory capabilities in drug discovery are complemented by significant developments in bioinformatics and computational approaches for integrating large complex datasets. Bioinformatic and computational analysis of integrated molecular, pathway network and phenotypic datasets enhance multiple stages of the drug discovery process and support more informative drug target hypothesis generation and testing. In this chapter we discuss and present examples demonstrating how the latest advances in RPPA complement and integrate with other emerging drug screening platforms to support a new era of more informative and evidence-led drug discovery strategies.


Assuntos
Análise Serial de Proteínas , Proteômica , Animais , Descoberta de Drogas/métodos , Descoberta de Drogas/tendências , Avaliação Pré-Clínica de Medicamentos , Humanos , Análise Serial de Proteínas/normas , Proteínas/química
11.
SLAS Discov ; 24(3): 224-233, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30694704

RESUMO

Multiparametric high-content imaging assays have become established to classify cell phenotypes from functional genomic and small-molecule library screening assays. Several groups have implemented machine learning classifiers to predict the mechanism of action of phenotypic hit compounds by comparing the similarity of their high-content phenotypic profiles with a reference library of well-annotated compounds. However, the majority of such examples are restricted to a single cell type often selected because of its suitability for simple image analysis and intuitive segmentation of morphological features. The aim of the current study was to evaluate and compare the performance of a classic ensemble-based tree classifier trained on extracted morphological features and a deep learning classifier using convolutional neural networks (CNNs) trained directly on images from the same dataset to predict compound mechanism of action across a morphologically and genetically distinct cell panel. Our results demonstrate that application of a CNN classifier delivers equivalent accuracy compared with an ensemble-based tree classifier at compound mechanism of action prediction within cell lines. However, our CNN analysis performs worse than an ensemble-based tree classifier when trained on multiple cell lines at predicting compound mechanism of action on an unseen cell line.


Assuntos
Aprendizado de Máquina , Linhagem Celular Tumoral , Técnicas Citológicas/métodos , Humanos , Redes Neurais de Computação
12.
Int J Parasitol Drugs Drug Resist ; 8(2): 350-360, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29957333

RESUMO

A novel L-glutamate-gated anion channel (IscaGluCl1) has been cloned from the black-legged tick, Ixodes scapularis, which transmits multiple pathogens including the agents of Lyme disease and human granulocytic anaplasmosis. When mRNA encoding IscaGluCl1 was expressed in Xenopus laevis oocytes, we detected robust 50-400 nA currents in response to 100 µM L-glutamate. Responses to L-glutamate were concentration-dependent (pEC50 3.64 ±â€¯0.11). Ibotenate was a partial agonist on IscaGluCl1. We detected no response to 100 µM aspartate, quisqualate, kainate, AMPA or NMDA. Ivermectin at 1 µM activated IscaGluCl1, whereas picrotoxinin (pIC50 6.20 ±â€¯0.04) and the phenylpyrazole fipronil (pIC50 6.90 ±â€¯0.04) showed concentration-dependent block of the L-glutamate response. The indole alkaloid okaramine B, isolated from fermentation products of Penicillium simplicissimum (strain AK40) grown on okara pulp, activated IscaGluCl1 in a concentration-dependent manner (pEC50 5.43 ±â€¯0.43) and may serve as a candidate lead compound for the development of new acaricides.


Assuntos
Acaricidas/farmacologia , Azetidinas/farmacologia , Azocinas/farmacologia , Canais de Cloreto/efeitos dos fármacos , Canais de Cloreto/genética , Alcaloides Indólicos/farmacologia , Ixodes/metabolismo , Abelmoschus/metabolismo , Acaricidas/química , Acaricidas/isolamento & purificação , Animais , Azetidinas/isolamento & purificação , Azocinas/isolamento & purificação , Vetores de Doenças , Descoberta de Drogas , Ácido Glutâmico/farmacologia , Alcaloides Indólicos/isolamento & purificação , Ivermectina/farmacologia , Ixodes/genética , Doença de Lyme/parasitologia , Oócitos/efeitos dos fármacos , Penicillium/química , Penicillium/crescimento & desenvolvimento , Penicillium/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
13.
Methods Mol Biol ; 1787: 171-181, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29736718

RESUMO

Principal component analysis enables dimensional reduction of multivariate datasets that are typical in high-content screening. A common analysis utilizing principal components is a distance measurement between a perturbagen-such as small-molecule treatment or shRNA knockdown-and a negative control. This method works well to identify active perturbagens, though it cannot discern between distinct phenotypic responses. Here, we describe an extension of the principal component analysis approach to multivariate high-content screening data to enable quantification of differences in direction in principal component space. The theta comparative cell scoring method can identify and quantify differential phenotypic responses between panels of cell lines to small-molecule treatment to support in vitro pharmacogenomics and drug mechanism-of-action studies.


Assuntos
Ensaios de Triagem em Larga Escala , Fenótipo , Análise de Componente Principal , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Interpretação Estatística de Dados , Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Processamento de Imagem Assistida por Computador , Imagem Molecular , Bibliotecas de Moléculas Pequenas
14.
Nat Methods ; 14(9): 849-863, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28858338

RESUMO

Image-based cell profiling is a high-throughput strategy for the quantification of phenotypic differences among a variety of cell populations. It paves the way to studying biological systems on a large scale by using chemical and genetic perturbations. The general workflow for this technology involves image acquisition with high-throughput microscopy systems and subsequent image processing and analysis. Here, we introduce the steps required to create high-quality image-based (i.e., morphological) profiles from a collection of microscopy images. We recommend techniques that have proven useful in each stage of the data analysis process, on the basis of the experience of 20 laboratories worldwide that are refining their image-based cell-profiling methodologies in pursuit of biological discovery. The recommended techniques cover alternatives that may suit various biological goals, experimental designs, and laboratories' preferences.


Assuntos
Rastreamento de Células/métodos , Ensaios de Triagem em Larga Escala/métodos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia/métodos , Reconhecimento Automatizado de Padrão/métodos , Análise Serial de Tecidos/métodos , Algoritmos , Animais , Interpretação Estatística de Dados , Humanos , Aprendizado de Máquina
15.
Assay Drug Dev Technol ; 14(7): 395-406, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27552144

RESUMO

In this article, we have developed novel data visualization tools and a Theta comparative cell scoring (TCCS) method, which supports high-throughput in vitro pharmacogenomic studies across diverse cellular phenotypes measured by multiparametric high-content analysis. The TCCS method provides a univariate descriptor of divergent compound-induced phenotypic responses between distinct cell types, which can be used for correlation with genetic, epigenetic, and proteomic datasets to support the identification of biomarkers and further elucidate drug mechanism-of-action. Application of these methods to compound profiling across high-content assays incorporating well-characterized cells representing known molecular subtypes of disease supports the development of personalized healthcare strategies without prior knowledge of a drug target. We present proof-of-principle data quantifying distinct phenotypic response between eight breast cancer cells representing four disease subclasses. Application of the TCCS method together with new advances in next-generation sequencing, induced pluripotent stem cell technology, gene editing, and high-content phenotypic screening are well placed to advance the identification of predictive biomarkers and personalized medicine approaches across a broader range of disease types and therapeutic classes.


Assuntos
Antineoplásicos/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ensaios de Triagem em Larga Escala/métodos , Fenótipo , Coloração e Rotulagem/métodos , Antineoplásicos/farmacologia , Feminino , Humanos , Células MCF-7
16.
Future Med Chem ; 8(11): 1331-47, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27357617

RESUMO

Phenotypic drug discovery (PDD) strategies are defined by screening and selection of hit or lead compounds based on quantifiable phenotypic endpoints without prior knowledge of the drug target. We outline the challenges associated with traditional phenotypic screening strategies and propose solutions and new opportunities to be gained by adopting modern PDD technologies. We highlight both historical and recent examples of approved drugs and new drug candidates discovered by modern phenotypic screening. Finally, we offer a prospective view of a new era of PDD underpinned by a wealth of technology advances in the areas of in vitro model development, high-content imaging and image informatics, mechanism-of-action profiling and target deconvolution.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/tendências , Fenótipo , Preparações Farmacêuticas/síntese química , Preparações Farmacêuticas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA