Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 19540, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945635

RESUMO

Most of previous photocatalysts contain metal species, thus exploring a metal-free photocatalyst is still challenging. A metal-free photocatalyst has an advantage for the development of economical and non-toxic artificial photosynthesis system and/or environmental purification applications. In this study, rhombohedral boron monosulfide (r-BS) was synthesized by a high-pressure solid-state reaction, and its photocatalytic properties were investigated. r-BS absorbed visible light, and its photocurrent action spectrum also exhibited visible light responsivity. The r-BS evolved hydrogen (H2) from water under ultraviolet (UV) as well as under visible light irradiation, and its internal quantum efficiency reached 1.8% under UV light irradiation. In addition to the H2 evolution reaction, the r-BS photocatalyst drove carbon dioxide (CO2) reduction and dye oxidation reactions under UV irradiation. Although bare r-BS was not so stable under strong light irradiation in water, cocatalyst modification improved its stability. These results indicate that r-BS is a new class of non-metal photocatalyst applicable for H2 production, CO2 reduction, and environmental purification reactions.

2.
ACS Appl Mater Interfaces ; 15(19): 23299-23305, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37140359

RESUMO

A copper-zirconia composite having an evenly distributed lamellar texture, Cu#ZrO2, was synthesized by promoting nanophase separation of the Cu51Zr14 alloy precursor in a mixture of carbon monoxide (CO) and oxygen (O2). High-resolution electron microscopy revealed that the material consists of interchangeable Cu and t-ZrO2 phases with an average thickness of 5 nm. Cu#ZrO2 exhibited enhanced selectivity toward the generation of formic acid (HCOOH) by electrochemical reduction of carbon dioxide (CO2) in aqueous media at a Faradaic efficiency of 83.5% at -0.9 V versus the reversible hydrogen electrode. In situ Raman spectroscopy has revealed that a bifunctional interplay between the Zr4+ sites and the Cu boundary leads to amended reaction selectivity along with a large number of catalytic sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA