Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(30): 16573-16583, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37473442

RESUMO

Mucin glycoproteins are the major component of mucus and are integral to the cellular glycocalyx. Mucins play diverse roles in health and disease, are an important element in epithelial tissue models, and have broad therapeutic potential. All mucin applications are currently challenged by their inherent structural heterogeneity and degradation by proteases. In this study, we describe the synthesis and study of chemically defined mucin analogues bearing native glycans. We utilized combinations of enantiomer amino acids and glycan thioether linkages to achieve tunable proteolysis while maintaining cytocompatibility and binding activity. Structural characterization revealed a previously unknown mirror-image helix and sheds light on the molecular drivers of glycoprotein conformation. This work represents an important step toward the development of artificial mucins for biomedical applications.


Assuntos
Mucinas , Polissacarídeos , Mucinas/química , Mucinas/metabolismo , Polissacarídeos/química , Glicoproteínas , Glicocálix/metabolismo , Muco
2.
Front Cell Dev Biol ; 10: 952931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325363

RESUMO

The cellular glycocalyx is involved in diverse biological phenomena in health and disease. Yet, molecular level studies have been challenged by a lack of tools to precisely manipulate this heterogeneous structure. Engineering of the cell surface using insertion of hydrophobic-terminal materials has emerged as a simple and efficient method with great promise for glycocalyx studies. However, there is a dearth of information about how the structure of the material affects membrane insertion efficiency and resulting density, the residence time of the material, or what types of cells can be utilized. Here, we examine a panel of synthetic mucin structures terminated in highly efficient cholesterylamide membrane anchors for their ability to engineer the glycocalyx of five different cell lines. We examined surface density, residence time and half-life, cytotoxicity, and the ability be passed to daughter cells. We report that this method is robust for a variety of polymeric structures, long-lasting, and well-tolerated by a variety of cell lines.

3.
Adv Drug Deliv Rev ; 191: 114540, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36228896

RESUMO

Mucin glycoproteins are the major component of mucus and coat epithelial cell surfaces forming the glycocalyx. The glycocalyx and mucus are involved in the transport of nutrients, drugs, gases, and pathogens toward the cell surface. Mucins are also involved in diverse diseases such as cystic fibrosis and cancer. Due to inherent heterogeneity in native mucin structure, many synthetic materials have been designed to probe mucin chemistry, biology, and physics. Such materials include various glycopolymers, low molecular weight glycopeptides, glycopolypeptides, polysaccharides, and polysaccharide-protein conjugates. This review highlights advances in the area of design and synthesis of mucin mimic materials, and their biomedical applications in glycan binding, epithelial models of infection, therapeutic delivery, vaccine formulation, and beyond.


Assuntos
Fibrose Cística , Mucinas , Humanos , Mucinas/química , Mucinas/metabolismo , Muco/metabolismo , Fibrose Cística/metabolismo , Polissacarídeos/química , Glicopeptídeos
4.
ACS Cent Sci ; 8(3): 351-360, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35345395

RESUMO

Mucins are a diverse and heterogeneous family of glycoproteins that comprise the bulk of mucus and the epithelial glycocalyx. Mucins are intimately involved in viral transmission. Mucin and virus laden particles can be expelled from the mouth and nose to later infect others. Viruses must also penetrate the mucus layer before cell entry and replication. The role of mucins and their molecular structure have not been well-characterized in coronavirus transmission studies. Laboratory studies predicting high rates of fomite transmission have not translated to real-world infections, and mucins may be one culprit. Here, we probed both surface and direct contact transmission scenarios for their dependence on mucins and their structure. We utilized disease-causing, bovine-derived, human coronavirus OC43. We found that bovine mucins could inhibit the infection of live cells in a concentration- and glycan-dependent manner. The effects were observed in both mock fomite and direct contact transmission experiments and were not dependent upon surface material or time-on-surface. However, the effects were abrogated by removal of the glycans or in a cross-species infection scenario where bovine mucin could not inhibit the infection of a murine coronavirus. Together, our data indicate that the mucin molecular structure plays a complex and important role in host defense.

5.
Nat Commun ; 12(1): 6472, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753949

RESUMO

The cellular glycocalyx and extracellular matrix are rich in glycoproteins and proteoglycans that play essential physical and biochemical roles in all life. Synthetic mimics of these natural bottlebrush polymers have wide applications in biomedicine, yet preparation has been challenged by their high grafting and glycosylation densities. Using one-pot dual-catalysis polymerization of glycan-bearing α-amino acid N-carboxyanhydrides, we report grafting-from glycopolypeptide brushes. The materials are chemically and conformationally tunable where backbone and sidechain lengths were precisely altered, grafting density modulated up to 100%, and glycan density and identity tuned by monomer feed ratios. The glycobrushes are composed entirely of sugars and amino acids, are non-toxic to cells, and are degradable by natural proteases. Inspired by native lipid-anchored proteoglycans, cholesterol-modified glycobrushes were displayed on the surface of live human cells. Our materials overcome long-standing challenges in glycobrush polymer synthesis and offer new opportunities to examine glycan presentation and multivalency from chemically defined scaffolds.


Assuntos
Substâncias Macromoleculares/metabolismo , Polímeros/metabolismo , Matriz Extracelular/metabolismo , Glicosilação , Humanos , Substâncias Macromoleculares/química , Polimerização , Polímeros/química , Proteoglicanas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA