Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Front Public Health ; 10: 909136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968459

RESUMO

Environmental particulate exposure and the potential risk to people with various types of cardiac diseases, most notably cardiovascular disease, have aroused scientific and regulatory interest worldwide. Epidemiological studies have shown associations between exposure to airborne environmental particulate matter (PM) and mortality from cardiovascular disease (CVD). The associations reported, however, are complex and may not involve a direct role for PM, since air pollutants are diverse and highly correlated. This study examines the potential role of occupational exposure to two types of particles, namely, manufactured carbon black (CB) and titanium dioxide (TiO2), on the risk of cardiovascular disease. To address the risk of cardiovascular disease from exposure to carbon black and titanium dioxide, as reflective of poorly soluble low toxicity particles, we reviewed the published cohort mortality studies of occupational exposure to carbon black and titanium dioxide. Mortality studies of carbon black have been conducted in the United States, Germany, and the United Kingdom. Five mortality studies related to workers involved in the manufacture of titanium dioxide in the United States and Europe have also been conducted. In addition, a meta-analysis of the three-carbon black mortality studies was performed. In the random-effects meta-analysis, full cohort meta-SMRs were 1.01 (95% confidence interval (CI): 0.79-1.29) for heart disease; 1.02 (95% CI: 0.80-1.30) for ischemic heart disease; and 1.08 (95% CI: 0.74-1.59) for acute myocardial infarction (AMI) mortality. A small but imprecise increased AMI mortality risk was suggested for cumulative exposure by a meta-HR = 1.10 per 100 mg/m3-years (95% CI: 0.92-1.31) but not for lugged exposures, that is, for recent exposures. Results of five cohort mortality studies of titanium dioxide workers in the United States and Europe showed no excess in all heart disease or cardiovascular disease. In the most recent study in the United States, an internal analysis, that is, within the cohort itself, with no lag time, showed that the exposure group 15-35 mg/m3-years yielded a significantly increased risk for heart disease; however, there was no evidence of increasing risk with increasing exposure for any of the exposure categories. In contrast to environmental studies, the results of cohort mortality studies do not demonstrate that airborne occupational exposure to carbon black and titanium dioxide particulates increases cardiovascular disease mortality. The lack of a relationship between carbon black and titanium dioxide and CVD mortality suggests that the associations reported in air pollution studies may not be driven by the particulate component.


Assuntos
Doenças Cardiovasculares , Cardiopatias , Exposição Ocupacional , Doenças Cardiovasculares/epidemiologia , Humanos , Exposição Ocupacional/efeitos adversos , Material Particulado/efeitos adversos , Fuligem , Titânio , Estados Unidos
2.
Food Chem Toxicol ; 153: 112292, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34052359

RESUMO

Nonfibrous potassium octatitanate particles are commercially utilized in applications such as brake pads or brake linings. The aim of this study was to assess lung toxicity in rats exposed to Terracess JS particle-types, one form of nonfibrous octatitanate particulates, and compare the effects to vehicle controls and to Min-U-Sil α-quartz particles as a positive benchmark control particle. Groups of male rats were intratracheally instilled with doses of either 1 or 5 mg/kg of Terracess JS particles or α-quartz particles in phosphate-buffered saline. Phosphate-buffered saline (PBS) solution instilled rats served as vehicle controls. Following exposures, the lungs of PBS and particle-exposed rats were evaluated for bronchoalveolar lavage (BAL) fluid inflammatory biomarkers at post-instillation time points of 1 week, 1 month, and 3 months. In addition, lung tissue morphologies from PBS or 5 mg/kg particle-exposed (Terracess JS or α-quartz) rats were evaluated at postexposure time points of 1 month and 3 months. The BAL fluid results demonstrated that pulmonary instillation exposures in rats to quartz particles produced sustained pulmonary inflammation and significant cytotoxic effects measured at 1 week, 1 month and 3 months postexposure. In contrast, exposures to Terracess JS particle-types produced no significant lung inflammatory or cell injury effects when compared to PBS vehicle control exposed rats. With regard to histopathology of lung tissue, pulmonary exposures to quartz particles in rats produced a progressive, dose-dependent lung inflammatory response characterized by neutrophils and foamy lipid-containing alveolar macrophage accumulation, as well as evidence of early lung tissue thickening consistent with the development of pulmonary fibrosis at the 3-month postexposure time period. In contrast, histopathological analyses of lung tissues revealed that pulmonary exposures to Terracess JS particulates resulted in no significant adverse effects when compared to PBS-exposed controls, as evidenced by the normal lung architecture observed in the exposed animals at post-instillation exposure time periods ranging from 1 month to 3 months. The results described herein demonstrate the benign nature of the pulmonary instillation response in rats following particle exposures to 1 or 5 mg/kg (approximately 1.25 mg) of Terracess JS particle-types in these pulmonary bioassay studies, using appropriate benchmark control particles for comparative evaluations. Thus, based on these results, it is concluded that inhaled Terracess JS particles are expected to have a low-risk potential for producing adverse pulmonary health effects in exposed workers.


Assuntos
Material Particulado/toxicidade , Titânio/toxicidade , Administração por Inalação , Animais , Automóveis , Bioensaio , Líquido da Lavagem Broncoalveolar/citologia , Exposição por Inalação , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Tamanho do Órgão/efeitos dos fármacos , Material Particulado/administração & dosagem , Pneumonia/induzido quimicamente , Pneumonia/patologia , Ratos , Titânio/administração & dosagem
3.
Nanomaterials (Basel) ; 9(5)2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31064102

RESUMO

Poorly soluble, low (cyto)toxic particles (PSLTs) are often regarded as one group, but it is important that these particles can be further differentiated based on their bioactivity. Currently, there are no biological endpoint based groupings for inhaled nanoparticles (NPs) that would allow us to subgroup PSLTs based on their mode of action. The aim of this study was to group NPs based on their cytotoxicity and by using the in vitro response of the endo-lysosomal system as a biological endpoint. The endo-lysosomal system is a main cellular loading site for NPs. An impaired endo-lysosomal system in alveolar type II cells may have serious adverse effects on the maintenance of pulmonary surfactant homeostasis. The 15 different NPs were tested with human lung adenocarcinoma (A549) cells. The highly soluble NPs were most cytotoxic. With respect to PSLTs, only three NPs increased the cellular load of acid and phospholipid rich organelles indicating particle biopersistence. All the rest PSLTs could be regarded as low hazardous. The presented in vitro test system could serve as a fast screening tool to group particles according to their ability to interfere with lung surfactant metabolism. We discuss the applicability of the suggested test system for bringing together substances with similar modes-of-action on lung epithelium. In addition, we discuss this approach as a benchmark test for the comparative assessment of biopersistence of PSLTs.

4.
Toxicol Lett ; 302: 42-59, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30468858

RESUMO

There is an ongoing discussion on the influence of surface-modifications on the toxicity of commercial particulate materials and how alterations in physical-chemical properties of surfaces impact toxicity. Titanium dioxide (TiO2) is a poorly soluble particulate material of significant socioeconomic importance that largely exists as surface-modified particle-types in commerce. The observed toxicological effects of TiO2 are primarily due to particle effects rather than substance chemistry, as such TiO2 is commonly considered to be a poorly soluble low toxicity (PSLT) particle. This review provides an overview of the effect of surface modifications on the pulmonary and oral toxicity of commercial TiO2 particles with emphasis on in vivo studies with appropriate controls, and where both surface modified and untreated materials are present in the same study. Published literature findings involving pulmonary and oral exposures to surface modified TiO2 particles were reviewed and evaluated for quality and commercial relevance. Suitable publications involving animal studies were identified and summarized. Several studies were identified that have evaluated commercially-relevant surface-modified forms of titanium dioxide with appropriate data quality and with direct comparison to untreated counterparts. Hydrophilic inorganic surface modifications including silica, alumina/alumina hydroxide depositions have been tested along with common hydrophilic and hydrophobic-organic surface treatments. The results for both pigmentary and nanoscale materials demonstrate similar behaviour and indicate limited impact of particle size, surface chemistry, surface charge and surface wettability on observed pulmonary or oral toxicity effects. The low intrinsic toxicity of the TiO2 base particle and evaluated surface modifications may account for the observed outcomes. A few published studies have drawn different conclusions; however, these were either not conducted using commercial TiO2 samples (with surface coatings), had several confounding variables to investigate, or were carried out using mouse strains. The differences in experimental designs are described. The identified pulmonary and oral toxicity studies largely indicate that surface modifications and particle size alone have little or no impact on the lung toxicity of TiO2 particles, following pulmonary exposures when all constituent materials are comprised of chemicals of low specific toxicity particles. In addition, based upon the results of 2 oral toxicity studies, one with surface treated TiO2 particles (OECD 408) and one without surface treated (OECD 407) TiO2 particles, there appears to have been no adverse impact on toxicity with the surface-coated material, as both studies produced no adverse effects at the very high doses tested.


Assuntos
Pneumopatias/induzido quimicamente , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Titânio/toxicidade , Testes de Toxicidade , Administração por Inalação , Administração Oral , Animais , Relação Dose-Resposta a Droga , Humanos , Exposição por Inalação , Pulmão/metabolismo , Pulmão/patologia , Pneumopatias/metabolismo , Pneumopatias/patologia , Nanopartículas Metálicas/química , Tamanho da Partícula , Medição de Risco , Propriedades de Superfície , Titânio/administração & dosagem , Titânio/química
5.
Regul Toxicol Pharmacol ; 100: 80-91, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30366008

RESUMO

In 2013, an ECETOC Task Force evaluated scientific understanding of the 'lung overload' hypothesis. As there is no evidence that humans develop lung tumours following exposure to poorly soluble particles (PSPs), emphasis was given to the observed higher sensitivity and specificity of rat lung responses and potential impacts of this on human risk assessment. Key arguments and outcomes are summarised here, together with discussion of additional findings published since 2013. Inhalation exposure to PSPs in all species is associated with localised pulmonary toxicity initiated by a persistent pro-inflammatory response to particle deposition. Events in the rat indicate a plausible adverse outcome pathway for lung tumour development following exposure to PSPs under overload conditions. A different particle lung translocation pattern compared to rats make humans less sensitive to developing comparable lung overload conditions and appears to also preclude tumour formation, even under severe and prolonged exposure conditions. Evidence continues to suggest that the rat lung model is unreliable as a predictor for human lung cancer risk. However, it is a sensitive model for detecting various thresholded inflammatory markers, with utility for non-neoplastic risk assessment purposes. It is noteworthy that preventing inflammatory rat lung responses will also inhibit development of neoplastic outcomes.


Assuntos
Pulmão/efeitos dos fármacos , Material Particulado/toxicidade , Testes de Toxicidade/métodos , Administração por Inalação , Animais , Humanos , Exposição por Inalação/efeitos adversos , Pulmão/patologia , Neoplasias Pulmonares/induzido quimicamente , Medição de Risco
6.
F1000Res ; 7: 376, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29636906

RESUMO

Nanotechnology is an emerging, cross-disciplinary technology designed to create and synthesize new materials at the nanoscale (generally defined as a particle size range of ≤10 -9 meters) to generate innovative or altered material properties. The particle properties can be modified to promote different and more flexible applications, resulting in consumer benefits, particularly in medical, cosmetic, and industrial applications. As this applied science matures and flourishes, concerns have arisen regarding potential health effects of exposures to untested materials, as many newly developed products have not been adequately evaluated. Indeed, it is necessary to ensure that societal and commercial advantages are not outweighed by potential human health or environmental disadvantages. Therefore, a variety of international planning activities or research efforts have been proposed or implemented, particularly in the European Union and United States, with the expectation that significant advances will be made in understanding potential hazards related to exposures in the occupational and/or consumer environments. One of the first conclusions reached regarding hazardous effects of nanoparticles stemmed from the findings of early pulmonary toxicology studies, suggesting that lung exposures to ultrafine particles were more toxic than those to larger, fine-sized particles of similar chemistry. This review documents some of the conceptual planning efforts, implementation strategies/activities, and research accomplishments over the past 10 years or so. It also highlights (in this author's opinion) some shortcomings in the research efforts and accomplishments over the same duration. In general, much progress has been made in developing and implementing environmental, health, and safety research-based protocols for addressing nanosafety issues. However, challenges remain in adequately investigating health effects given 1) many different nanomaterial types, 2) various potential routes of exposure, 3) nanomaterial characterization issues, 4) limitations in research methodologies, such as time-course and dose-response issues, and 5) inadequate in vitro methodologies for in vivo standardized, guideline toxicity testing.

7.
J Occup Environ Med ; 60(7): e356-e367, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29538276

RESUMO

OBJECTIVE: A review of studies of occupational titanium dioxide (TiO2) exposure was conducted, and results from the three industry-based cohort mortality studies were summarized using meta-analysis. METHODS: Summary standardized mortality ratios (SSMR) and summary Cox regression coefficients from exposure-response models were derived using random effects models. RESULTS: Results from studies of 24,312 TiO2 production workers were combined. SSMRs for lung cancer, all causes, all cancer, and non-malignant respiratory disease were 1.10 (95% confidence interval [CI]: 0.91 to 1.32), 0.85 (95% CI: 0.81 to 0.89), 0.92 (95% CI: 0.82 to 1.03), and 0.85 (95% CI: 0.71 to 1.02), respectively. For lung cancer, the summary hazard ratio for a 1 mg/m year increase in cumulative exposure was 0.999 (0.997 to 1.002). CONCLUSIONS: Consistent with other published qualitative reviews, there is no clear evidence of an association between occupational exposure to TiO2 and lung cancer.


Assuntos
Neoplasias Pulmonares/mortalidade , Metalurgia , Exposição Ocupacional , Titânio , Humanos , Modelos de Riscos Proporcionais , Doenças Respiratórias/mortalidade
9.
Part Fibre Toxicol ; 14(1): 14, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28449668
10.
Int J Toxicol ; 35(1): 5-16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26957538

RESUMO

Nanomaterials, including nanoparticles and nanoobjects, are being incorporated into everyday products at an increasing rate. These products include consumer products of interest to toxicologists such as pharmaceuticals, cosmetics, food, food packaging, household products, and so on. The manufacturing of products containing or utilizing nanomaterials in their composition may also present potential toxicologic concerns in the workplace. The molecular complexity and composition of these nanomaterials are ever increasing, and the means and methods being applied to characterize and perform useful toxicologic assessments are rapidly advancing. This article includes presentations by experienced toxicologists in the nanotoxicology community who are focused on the applied aspect of the discipline toward supporting state of the art toxicologic assessments for food products and packaging, pharmaceuticals and medical devices, inhaled nanoparticle and gastrointestinal exposures, and addressing occupational safety and health issues and concerns. This symposium overview article summarizes 5 talks that were presented at the 35th Annual meeting of the American College of Toxicology on the subject of "Applied Nanotechnology."


Assuntos
Nanoestruturas/toxicidade , Testes de Toxicidade/métodos , Animais , Humanos , Toxicocinética
11.
Food Chem Toxicol ; 85: 138-47, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26362081

RESUMO

The basic tenets for assessing health risks posed by nanoparticles (NP) requires documentation of hazards and the corresponding exposures that may occur. Accordingly, this review describes the range and types of potential human exposures that may result from interactions with titanium dioxide (TiO2) particles or NP - either in the occupational/workplace environment, or in consumer products, including food materials and cosmetics. Each of those applications has a predominant route of exposure. Very little is known about the human impact potential from environmental exposures to NP - thus this particular issue will not be discussed further. In the workplace or occupational setting inhalation exposure predominates. Experimental toxicity studies demonstrate low hazards in particle-exposed rats. Only at chronic overload exposures do rats develop forms of lung pathology. These findings are not supported by multiple epidemiology studies in heavily-exposed TiO2 workers which demonstrate a lack of correlation between chronic particle exposures and adverse health outcomes including lung cancer and noncancerous chronic respiratory effects. Cosmetics and sunscreens represent the major application of dermal exposures to TiO2 particles. Experimental dermal studies indicate a lack of penetration of particles beyond the epidermis with no consequent health risks. Oral exposures to ingested TiO2 particles in food occur via passage through the gastrointestinal tract (GIT), with studies indicating negligible uptake of particles into the bloodstream of humans or rats with subsequent excretion through the feces. In addition, standardized guideline-mandated subchronic oral toxicity studies in rats demonstrate very low toxicity effects with NOAELs of >1000 mg/kg bw/day. Additional issues which are summarized in detail in this review are: 1) Methodologies for implementing the Nano Risk Framework - a process for ensuring the responsible development of products containing nanoscale materials; and 2) Safe-handling of nanomaterials in the laboratory.


Assuntos
Qualidade de Produtos para o Consumidor , Poluentes Ambientais/toxicidade , Nanopartículas Metálicas/toxicidade , Medição de Risco/métodos , Titânio/toxicidade , Administração Cutânea , Administração Oral , Animais , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/administração & dosagem , Poluentes Ambientais/química , Guias como Assunto , Humanos , Exposição por Inalação/efeitos adversos , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Exposição Ocupacional/efeitos adversos , Tamanho da Partícula , Medição de Risco/tendências , Titânio/administração & dosagem , Titânio/química , Testes de Toxicidade/métodos , Testes de Toxicidade/normas
12.
Toxicol Sci ; 147(1): 5-16, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26310852

RESUMO

The exponential growth in the employment of nanomaterials (NMs) has given rise to the field of nanotoxicology; which evaluates the safety of engineered NMs. Initial nanotoxicological studies were limited by a lack of both available materials and accurate biodispersion characterization tools. However, the years that followed were marked by the development of enhanced synthesis techniques and characterization technologies; which are now standard practice for nanotoxicological evaluation. Paralleling advances in characterization, significant progress was made in correlating specific physical parameters, such as size, morphology, or coating, to resultant physiological responses. Although great strides have been made to advance the field, nanotoxicology is currently at a crossroads and faces a number of obstacles and technical limitations not associated with traditional toxicology. Some of the most pressing and influential challenges include establishing full characterization requirements, standardization of dosimetry, evaluating kinetic rates of ionic dissolution, improving in vitro to in vivo predictive efficiencies, and establishing safety exposure limits. This Review will discuss both the progress and future directions of nanotoxicology: highlighting key previous research successes and exploring challenges plaguing the field today.


Assuntos
Nanoestruturas/toxicidade , Nanotecnologia/tendências , Toxicologia/tendências , Animais , Humanos , Nanoestruturas/química , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/prevenção & controle
13.
Sci Technol Adv Mater ; 16(3): 034603, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27877790

RESUMO

A recent review article critically assessed the effectiveness of published research articles in nanotoxicology to meaningfully address health and safety issues for workers and consumers. The main conclusions were that, based on a number of flaws in study designs, the potential risk from exposures to nanomaterials is highly exaggerated, and that no 'nano-specific' adverse effects, different from exposures to bulk particles, have been convincingly demonstrated. In this brief editorial we focus on a related tangential issue which potentially compromises the integrity of basic risk science. We note that some single investigation studies report specious toxicity findings, which make the conclusions more alarming and attractive and publication worthy. In contrast, the standardized, carefully conducted, 'guideline study results' are often ignored because they can frequently report no adverse effects; and as a consequence are not considered as novel findings for publication purposes, and therefore they are never considered as newsworthy in the popular press. Yet it is the Organization for Economic Cooperation and Development (OECD) type test guideline studies that are the most reliable for conducting risk assessments. To contrast these styles and approaches, we present the results of a single study which reports high toxicological effects in rats following low-dose, short-term oral exposures to nanoscale titanium dioxide particles concomitant with selective investigative analyses. Alternatively, the findings of OECD test guideline 408, standardized guideline oral toxicity studies conducted for 90 days at much higher doses (1000 mg kg-1) in male and female rats demonstrated no adverse effects following a very thorough and complete clinical chemical, as well as histopathological evaluation of all of the relevant organs in the body. This discrepancy in study findings is not reconciled by the fact that several biokinetic studies in rats and humans demonstrate little or no uptake of nanoscale or pigment-grade TiO2 particles following oral exposures. We conclude that to develop a competent risk assessment profile, results derived from standardized, guideline-type studies, and even 'no effect' study findings provide critically useful input for assessing safe levels of exposure; and should, in principle, be readily acceptable for publication in peer-reviewed toxicology journals. This is a necessary prerequisite for developing a complete dataset for risk assessment determinations.

14.
Toxicol Lett ; 220(2): 193-204, 2013 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-23603385

RESUMO

Due to its multifunctional applications, titanium dioxide particles have widespread use in commerce. The particle-types function as sources of pigment color, in food products, anti-bacterial components, ultraviolet radiation scavengers, catalysts, as well as in cosmetics. Because of its inherent properties in a diverse number of products, exposures may occur via any of the major point-of-entry routes, i.e., inhalation, oral or dermal. Although the majority of TiO2 applications are known to exist in the pigment-grade form, nanoscale forms of TiO2 are also common components in several products. This brief review is designed to identify relevant toxicology and risk-related issues which inform health effects assessments on the various forms of titanium dioxide particles. While there has been an abundance of hazard data generated on titanium dioxide particulates, many of the published reports have limited informational value for assessing health effects due, in large part, to shortcomings in experimental design issues, such as: (1) inadequate material characterization of test samples; (2) questionable relevance of experimental systems employed to simulate human exposures; (3) applications of generally high doses, exclusive focus on acute toxicity endpoints, and a lack of reference benchmark control materials, to afford interpretation of measured results; and/or (4) failure to recognize fundamental differences between hazard and risk concepts. Accordingly, a number of important toxicology issues are identified and integrated herein to provide a more comprehensive assessment of the health risks of different forms of pigment-grade and nanoscale titanium dioxide particles. It is important to note that particle-types of different TiO2 compositions may have variable toxicity potencies, depending upon crystal structure, particle size, particle surface characteristics and surface coatings. In order to develop a more robust health risk evaluation of TiO2 particle exposures, this review focuses on the following issues: (1) Introduction to TiO2 particle chemistry/functionality and importance of robust material characterization of test samples; (2) Implementation of meaningful hazard studies for gauging EHS safety issues ­ pulmonary bioassay data and development of the Nano Risk Framework for developmental nano TiO2 compounds; (3) Epidemiological study findings on titanium dioxide workers ­ the most heavily-exposed populations; (4) Methodologies for setting occupational exposure limits including benchmarking or bridging comparisons; and (5) The importance of particle overload data in the lungs of rats as it relates to gauging the relevance of health effects for humans. A comprehensive evaluation of the existing animal and human health data is a necessary prerequisite for facilitating accurate assessments of human health risks to TiO2 exposures.


Assuntos
Nanopartículas/intoxicação , Nanopartículas/toxicidade , Titânio/intoxicação , Titânio/toxicidade , Animais , Corantes/intoxicação , Corantes/toxicidade , Humanos , Tamanho da Partícula
15.
Toxicol Pathol ; 41(2): 387-94, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23242579

RESUMO

The goal of this article is to evaluate a recently published subchronic inhalation study with carbon nanofibers in rats and discuss the importance of a weight-of-evidence (WOE) framework for determining no adverse effect levels (NOAELs). In this Organization for Economic Cooperation and Development (OECD) 413 guideline inhalation study with VGCF-H carbon nanofibers (CNFs), rats were exposed to 0, 0.54, 2.5 or 25 mg/m(3) CNF for 13 weeks. The standard toxicology experimental design was supplemented with bronchoalveolar lavage (BAL) and respiratory cell proliferation (CP) endpoints. BAL fluid (BALF) recovery of inflammatory cells and mediators (i.e., BALF- lactate dehydrogenase [LDH], microprotein [MTP], and alkaline phosphatase [ALKP] levels) were increased only at 25 mg/m(3), 1 day after exposure. No differences versus control values in were measured at 0.54 or 2.5 mg/m(3) exposure concentrations for any BAL fluid endpoints. Approximately 90% (2.5 and 25 mg/m(3)) of the BAL-recovered macrophages contained CNF. CP indices at 25 mg/m(3) were increased in the airways, lung parenchyma, and subpleural regions, but no increases in CP versus controls were measured at 0.54 or 2.5 mg/m(3). Based upon histopathology criteria, the NOAEL was set at 0.54 mg/m(3), because at 2.5 mg/m(3), "minimal cellular inflammation" of the airways/lung parenchyma was noted by the study pathologist; while the 25 mg/m(3) exposure concentration produced slight inflammation and occasional interstitial thickening. In contrast, none of the more sensitive pulmonary biomarkers such as BAL fluid inflammation/cytotoxicity biomarkers or CP turnover results at 2.5 mg/m(3) were different from air-exposed controls. Given the absence of convergence of the histopathological observations versus more quantitative measures at 2.5 mg/m(3), it is recommended that more comprehensive guidance measures be implemented for setting adverse effect levels in (nano)particulate, subchronic inhalation studies including a WOE approach for establishing no adverse effect levels; and a suggestion that some findings should be viewed as normal physiological adaptations (e.g., normal macrophage phagocytic responses-minimal inflammation) to long-term particulate inhalation exposures.


Assuntos
Exposição por Inalação/efeitos adversos , Nanofibras/toxicidade , Aerossóis , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Carbono/toxicidade , Proliferação de Células/efeitos dos fármacos , Feminino , Exposição por Inalação/análise , Pulmão/química , Pulmão/citologia , Pulmão/patologia , Masculino , Nanofibras/administração & dosagem , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade/métodos , Testes de Toxicidade/normas
16.
Toxicol Sci ; 128(2): 449-60, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22581831

RESUMO

A subchronic inhalation toxicity study of inhaled vapor grown carbon nanofibers (CNF) (VGCF-H) was conducted in male and female Sprague Dawley rats. The CNF test sample was composed of > 99.5% carbon with virtually no catalyst metals; Brunauer, Emmett, and Teller (BET) surface area measurements of 13.8 m2/g; and mean lengths and diameters of 5.8 µm and 158 nm, respectively.Four groups of rats per sex were exposed nose-only, 6 h/day, for 5 days/week to target concentrations of 0, 0.50, 2.5, or 25 mg/m3 VGCF-H over a 90-day period and evaluated 1 day later. Assessments included conventional clinical and histopathological methods, bronchoalveolar lavage fluid (BALF) analysis, and cell proliferation (CP) studies of the terminal bronchiole (TB), alveolar duct (AD), and subpleural regions of the respiratory tract. In addition, groups of 0 and 25 mg/m3 exposed rats were evaluated at 3 months postexposure (PE). Aerosol exposures of rats to 0.54 (4.9 f/cc), 2.5 (56 f/cc), and 25 (252 f/cc) mg/m(3) of VGCF-H CNFs produced concentration-related small, detectable accumulation of extrapulmonary fibers with no adverse tissue effects. At the two highest concentrations, inflammation of the TB and AD regions of the respiratory tract was noted wherein fiber-laden alveolar macrophages had accumulated. This finding was characterized by minimal infiltrates of inflammatory cells in rats exposed to 2.5mg/m(3) CNF, inflammation along with some thickening of interstitial walls, and hypertrophy/hyperplasia of type II epithelial cells, graded as slight for the 25mg/m(3) concentration. At 3 months PE, the inflammation in the high dose was reduced. No adverse effects were observed at 0.54mg/m(3). BALF and CP endpoint increases versus controls were noted at 25mg/m(3) VGCF-H but not different from control values at 0.54 or 2.5mg/m(3). After 90 days PE, BALF biomarkers were still increased at 25mg/m(3), indicating that the inflammatory response was not fully resolved. Greater than 90% of CNF-exposed, BALF-recovered alveolar macrophages from the 25 and 2.5mg/m(3) exposure groups contained nanofibers (> 60% for 0.5mg/m(3)). A nonspecific inflammatory response was also noted in the nasal passages. The no-observed-adverse-effect level for VGCF-H nanofibers was considered to be 0.54mg/m(3) (4.9 fibers/cc) for male and female rats, based on the minimal inflammation in the terminal bronchiole and alveolar duct areas of the lungs at 2.5mg/m(3) exposures. It is noteworthy that the histopathology observations at the 2.5mg/m(3) exposure level did not correlate with the CP or BALF data at that exposure concentration. In addition, the results with CNF are compared with published findings of 90-day inhalation studies in rats with carbon nanotubes, and hypotheses are presented for potency differences based on CNT physicochemical characteristics. Finally, the (lack of) relevance of CNF for the high aspect ratio nanomaterials/fiber paradigm is discussed.


Assuntos
Carbono , Nanofibras/toxicidade , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar , Proliferação de Células/efeitos dos fármacos , Feminino , Masculino , Microscopia Eletrônica de Transmissão , Ratos , Ratos Sprague-Dawley , Sistema Respiratório/citologia , Sistema Respiratório/efeitos dos fármacos
17.
Methods Mol Biol ; 726: 313-24, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21424458

RESUMO

Health risks following exposures to nanoparticle types are dependent upon two primary factors, namely, hazard and exposure potential. This chapter describes a pulmonary bioassay methodology for assessing the hazardous effects of nanoparticulates in rats following intratracheal instillation exposures; these pulmonary exposures are utilized as surrogates for the more physiologically relevant inhalation route of exposure. The fundamental features of this pulmonary bioassay are dose-response evaluations and time-course assessments to determine the sustainability of any observed effect. Thus, the major endpoints of this assay are the following: (1) time course and dose-response intensity of pulmonary inflammation and cytotoxicity, (2) airway and lung parenchymal cell proliferation, and (3) histopathological evaluation of lung tissue. This assay can be performed using particles in the fine (pigmentary) or ultrafine (nano) size regimes.In this assay, rats are exposed to selected concentrations of particle solutions or suspensions and lung effects are evaluated at 24 h, 1 week, 1 month, and 3 months postinstillation exposure. Cells and fluids from groups of particle-exposed animals and control animals are recovered by bronchoalveolar lavage (BAL) and evaluated for inflammatory and cytotoxic endpoints. This protocol also describes the lung tissue preparation and histopathological analysis of the lung tissue of particle-instilled rats. This assay demonstrates that instillation exposures of particles produce effects similar to those previously measured in inhalation studies of the same particulates.


Assuntos
Pulmão/efeitos dos fármacos , Nanopartículas/toxicidade , Pneumonia/induzido quimicamente , Animais , Líquido da Lavagem Broncoalveolar/citologia , Proliferação de Células/efeitos dos fármacos , Contagem de Leucócitos , Pulmão/patologia , Masculino , Neutrófilos/metabolismo , Ratos
18.
Toxicol Sci ; 120 Suppl 1: S109-29, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21177774

RESUMO

It has long been recognized that the physical form of materials can mediate their toxicity--the health impacts of asbestiform materials, industrial aerosols, and ambient particulate matter are prime examples. Yet over the past 20 years, toxicology research has suggested complex and previously unrecognized associations between material physicochemistry at the nanoscale and biological interactions. With the rapid rise of the field of nanotechnology and the design and production of increasingly complex nanoscale materials, it has become ever more important to understand how the physical form and chemical composition of these materials interact synergistically to determine toxicity. As a result, a new field of research has emerged--nanotoxicology. Research within this field is highlighting the importance of material physicochemical properties in how dose is understood, how materials are characterized in a manner that enables quantitative data interpretation and comparison, and how materials move within, interact with, and are transformed by biological systems. Yet many of the substances that are the focus of current nanotoxicology studies are relatively simple materials that are at the vanguard of a new era of complex materials. Over the next 50 years, there will be a need to understand the toxicology of increasingly sophisticated materials that exhibit novel, dynamic and multifaceted functionality. If the toxicology community is to meet the challenge of ensuring the safe use of this new generation of substances, it will need to move beyond "nano" toxicology and toward a new toxicology of sophisticated materials. Here, we present a brief overview of the current state of the science on the toxicology of nanoscale materials and focus on three emerging toxicology-based challenges presented by sophisticated materials that will become increasingly important over the next 50 years: identifying relevant materials for study, physicochemical characterization, and biointeractions.


Assuntos
Nanoestruturas/toxicidade , Nanotecnologia , Testes de Toxicidade/métodos , Toxicologia , Animais , Fenômenos Químicos , Interações Medicamentosas , Humanos , Nanoestruturas/química , Tamanho da Partícula , Medição de Risco
19.
Nano Lett ; 10(12): 4777-82, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21033694

RESUMO

Nanotechnology is currently undergoing an impressive expansion in material science research and development of systems that have novel properties due to their small size. Most of the research efforts have been focused on applications, while the implications efforts (i.e., environmental health and safety) have lagged behind. As a consequence, the success of nanotechnology will require assurances that the products being developed are safe from an environmental, health, and safety standpoint. These concerns have led to a debate among governmental agencies and advocacy groups on whether implementation of special regulations should be required for commercialization of products containing nanomaterials. Therefore the assessments of nanomaterial-related health risks must be accurate and verifiable. A mechanism for conducting well-designed toxicology studies includes rigorous attention to nanoparticle physicochemical characterization, as well as consideration of potential routes of exposure, justification of nanoparticle doses, and inclusion of benchmark controls. Unfortunately, some results obtained from earlier studies have fostered general perceptions and fears about nanoparticle health hazards-based mainly upon simple metrics such as particle size, surface area, and particle dose. In addition, there are currently held views that results of screening in silico or in vitro cell culture assays can serve as adequate screening substitutes for identifying health hazards. Some of these "misconceptions" should be challenged or confirmed by the implementation of thorough and accurately detailed nanotoxicology studies. In this article, the author briefly discusses some of the generalized "misconceptions" regarding nanomaterial toxicity and presents alternative views on these issues.


Assuntos
Nanopartículas/toxicidade , Exposição Ambiental , Humanos , Nanotecnologia
20.
Nanotoxicology ; 4: 409-13, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20925448

RESUMO

The development of an environmental health and safety risk management system for nanoscale particle-types requires a base set of hazard data. Accurate determination of health and environmental risks of nanomaterials is a function of the integration of hazard and exposure datasets. Recently, a nanoparticle risk assessment strategy was promulgated and the components are described in a document entitled "Nanorisk framework" (www.nanoriskframework.com). A major component of the hazard evaluation includes a proposed minimum base set of toxicity studies. Included in the suggested studies were substantial particle characterization, a variety of acute hazard and environmental tests, concomitant with screening-type genotoxicity studies. The implementation of well-accepted genotoxicity assays for testing nanomaterials remains a controversial issue. This is because many of these genotoxicity tests were designed for screening general macroparticle chemicals and might not be suitable for the screening of nanomaterials (even of the same compositional material). Furthermore, no nanoparticle-type positive controls have been established or universally accepted for these tests. Although it is the comparative results of the test material vs. the negative or vehicle control that forms the basis for interpreting the results and potency of test materials in genetic toxicology assays, the lack of a nanoparticle-type positive control questions the suitability of the tests to identify nanomaterials with genotoxic properties. It is also not possible to establish historical positive control ranges that would confirm the sensitivity of the tests. Although several genetic toxicology tests have been validated for chemicals according to the Organisation for Economic Co-operation and Development (OECD) test guidelines, the relevance of these assays for nanoparticulate materials remains to be determined. In an attempt to remedy this issue, the OECD has established current projects designed to evaluate the relevance and reproducibility of safety hazard tests for representative nanomaterials, including genotoxicity assays (i.e., Steering Group 3 ­ Safety Testing of Representative Nanomaterials). In this article, we discuss our past approaches and experience in conducting genotoxicity assays (1) for a newly developed ultrafine TiO2 particle-type; and (2) in a recent inhalation study, evaluating micronucleus formation in rat erythrocytes following exposures to engineered amorphous nanosilica particles. It seems clear that the development of standardized approaches will be necessary in order to determine whether exposures to specific nanoparticle-types are associated with genotoxic events. The appropriateness of available genotoxicity test systems for nanomaterials requires confirmation and standardization. Accordingly, it seems reasonable to conclude that any specific regulatory testing requirements for nanoparticles would be premature at this time.


Assuntos
Testes de Mutagenicidade/métodos , Nanoestruturas/toxicidade , Animais , Testes para Micronúcleos , Testes de Mutagenicidade/normas , Ratos , Reticulócitos/efeitos dos fármacos , Titânio/química , Titânio/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA