Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 16431, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712706

RESUMO

Pentameric GABAA receptors mediate a large share of CNS inhibition. The γ2 subunit is a typical constituent. At least 11 mutations in the γ2 subunit cause human epilepsies, making the role of γ2-containing receptors in brain function of keen basic and translational interest. How small changes to inhibition may cause brain abnormalities, including seizure disorders, is unclear. In mice, we perturbed fast inhibition with a point mutation T272Y (T6'Y in the second membrane-spanning domain) to the γ2 subunit. The mutation imparts resistance to the GABAA receptor antagonist picrotoxin, allowing verification of mutant subunit incorporation. We confirmed picrotoxin resistance and biophysical properties in recombinant receptors. T6'Y γ2-containing receptors also exhibited faster deactivation but unaltered steady-state properties. Adult T6'Y knockin mice exhibited myoclonic seizures and abnormal cortical EEG, including abnormal hippocampal-associated theta oscillations. In hippocampal slices, picrotoxin-insensitive inhibitory synaptic currents exhibited fast decay. Excitatory/inhibitory balance was elevated by an amount expected from the IPSC alteration. Partial pharmacological correction of γ2-mediated IPSCs with diazepam restored total EEG power toward baseline, but had little effect on the abnormal low-frequency peak in the EEG. The results suggest that at least part of the abnormality in brain function arises from the acute effects of truncated inhibition.


Assuntos
Hipocampo/metabolismo , Hipocampo/fisiopatologia , Inibição Neural , Animais , Biomarcadores , Linhagem Celular , Diazepam/farmacologia , Suscetibilidade a Doenças , Eletroencefalografia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Camundongos , Camundongos Knockout , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo
2.
PLoS One ; 13(4): e0195520, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29617444

RESUMO

Neurons require a nearly constant supply of ATP. Glucose is the predominant source of brain ATP, but the direct effects of prolonged glucose deprivation on neuronal viability and function remain unclear. In sparse rat hippocampal microcultures, neurons were surprisingly resilient to 16 h glucose removal in the absence of secondary excitotoxicity. Neuronal survival and synaptic transmission were unaffected by prolonged removal of exogenous glucose. Inhibition of lactate transport decreased microculture neuronal survival during concurrent glucose deprivation, suggesting that endogenously released lactate is important for tolerance to glucose deprivation. Tandem depolarization and glucose deprivation also reduced neuronal survival, and trace glucose concentrations afforded neuroprotection. Mass cultures, in contrast to microcultures, were insensitive to depolarizing glucose deprivation, a difference attributable to increased extracellular lactate levels. Removal of local astrocyte support did not reduce survival in response to glucose deprivation or alter evoked excitatory transmission, suggesting that on-demand, local lactate shuttling is not necessary for neuronal tolerance to prolonged glucose removal. Taken together, these data suggest that endogenously produced lactate available globally in the extracellular milieu sustains neurons in the absence of glucose. A better understanding of resilience mechanisms in reduced preparations could lead to therapeutic strategies aimed to bolster these mechanisms in vulnerable neuronal populations.


Assuntos
Sobrevivência Celular/fisiologia , Glucose/deficiência , Ácido Láctico/metabolismo , Neurônios/metabolismo , Animais , Astrócitos/metabolismo , Células Cultivadas , Técnicas de Cocultura , Espaço Extracelular/metabolismo , Glicogênio/metabolismo , Hipocampo/metabolismo , Neuroproteção/fisiologia , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia
3.
J Neurosci ; 38(13): 3218-3229, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29476014

RESUMO

N-methyl-d-aspartate receptors (NMDARs) are ionotropic glutamate receptors important for synaptic plasticity, memory, and neuropsychiatric health. NMDAR hypofunction contributes to multiple disorders, including anti-NMDAR encephalitis (NMDARE), an autoimmune disease of the CNS associated with GluN1 antibody-mediated NMDAR internalization. Here we characterize the functional/pharmacological consequences of exposure to CSF from female human NMDARE patients on NMDAR function, and we characterize the effects of intervention with recently described positive allosteric modulators (PAMs) of NMDARs. Incubation (48 h) of rat hippocampal neurons of both sexes in confirmed NMDARE patient CSF, but not control CSF, attenuated NMDA-induced current. Residual NMDAR function was characterized by lack of change in channel open probability, indiscriminate loss of synaptic and extrasynaptic NMDARs, and indiscriminate loss of GluN2B-containing and GluN2B-lacking NMDARs. NMDARs tagged with N-terminal pHluorin fluorescence demonstrated loss of surface receptors. Thus, function of residual NMDARs following CSF exposure was indistinguishable from baseline, and deficits appear wholly accounted for by receptor loss. Coapplication of CSF and PAMs of NMDARs (SGE-301 or SGE-550, oxysterol-mimetic) for 24 h restored NMDAR function following 24 h incubation in patient CSF. Curiously, restoration of NMDAR function was observed despite washout of PAMs before electrophysiological recordings. Subsequent experiments suggested that residual allosteric potentiation of NMDAR function explained the persistent rescue. Further studies of the pathogenesis of NMDARE and intervention with PAMs may inform new treatments for NMDARE and other disorders associated with NMDAR hypofunction.SIGNIFICANCE STATEMENT Anti-N-methyl-d-aspartate receptor encephalitis (NMDARE) is increasingly recognized as an important cause of sudden-onset psychosis and other neuropsychiatric symptoms. Current treatment leaves unmet medical need. Here we demonstrate cellular evidence that newly identified positive allosteric modulators of NMDAR function may be a viable therapeutic strategy.


Assuntos
Encefalite/líquido cefalorraquidiano , Doença de Hashimoto/líquido cefalorraquidiano , Neurotransmissores/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciais Sinápticos/efeitos dos fármacos , Adulto , Regulação Alostérica , Animais , Linhagem Celular , Células Cultivadas , Encefalite/tratamento farmacológico , Encefalite/imunologia , Feminino , Doença de Hashimoto/tratamento farmacológico , Doença de Hashimoto/imunologia , Humanos , Masculino , Camundongos , Neurotransmissores/líquido cefalorraquidiano , Neurotransmissores/imunologia , Neurotransmissores/uso terapêutico , Transporte Proteico , Ratos , Receptores de N-Metil-D-Aspartato/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA