RESUMO
Genetic variations in the hyaluronan synthase 1 gene (HAS1) influence HAS1 aberrant splicing. HAS1 is aberrantly spliced in malignant cells from multiple myeloma (MM) and Waldenstrom macroglobulinemia (WM), but not in their counterparts from healthy donors. The presence of aberrant HAS1 splice variants predicts for poor survival in multiple myeloma (MM). We evaluated the influence of inherited HAS1 single nucleotide polymorphisms (SNP) on the risk of having a systemic B cell malignancy in 1414 individuals compromising 832 patients and 582 healthy controls, including familial analysis of an Icelandic kindred. We sequenced HAS1 gene segments from 181 patients with MM, 98 with monoclonal gammopathy of undetermined significance (MGUS), 72 with Waldenstrom macroglobulinemia (WM), 169 with chronic lymphocytic leukemia (CLL), as well as 34 members of a monoclonal gammopathy-prone Icelandic family, 212 age-matched healthy donors and a case-control cohort of 295 breast cancer patients with 353 healthy controls. Three linked single nucleotide polymorphisms (SNP) in HAS1 intron3 are significantly associated with B-cell malignancies (range pâ=â0.007 to pâ=â10(-5)), but not MGUS or breast cancer, and predict risk in a 34 member Icelandic family (pâ=â0.005, Odds Ratioâ=â5.8 (OR)), a relatively homogeneous cohort. In contrast, exon3 SNPs were not significantly different among the study groups. Pooled analyses showed a strong association between the linked HAS1 intron3 SNPs and B-cell malignancies (ORâ=â1.78), but not for sporadic MGUS or for breast cancer (OR<1.0). The minor allele genotypes of HAS1 SNPs are significantly more frequent in MM, WM, CLL and in affected members of a monoclonal gammopathy-prone family than they are in breast cancer, sporadic MGUS or healthy donors. These inherited changes may increase the risk for systemic B-cell malignancies but not for solid tumors.
Assuntos
Glucuronosiltransferase/genética , Leucemia Linfocítica Crônica de Células B/genética , Paraproteinemias/genética , Macroglobulinemia de Waldenstrom/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos B/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Hialuronan Sintases , Leucemia Linfocítica Crônica de Células B/patologia , Pessoa de Meia-Idade , Paraproteinemias/patologia , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Análise de Sequência de DNA , Macroglobulinemia de Waldenstrom/patologiaRESUMO
Aberrant pre-mRNA splice variants of hyaluronan synthase 1 (HAS1) have been identified in malignant cells from cancer patients. Bioinformatic analysis suggests that intronic sequence changes can underlie aberrant splicing. Deletions and mutations were introduced into HAS1 minigene constructs to identify regions that can influence aberrant intronic splicing, comparing the splicing pattern in transfectants with that in multiple myeloma (MM) patients. Introduced genetic variations in introns 3 and 4 of HAS1 as shown here can promote aberrant splicing of the type detected in malignant cells from MM patients. HAS1Vd is a novel intronic splice variant first identified here. HAS1Vb, an intronic splice variant previously identified in patients, skips exon 4 and utilizes the same intron 4 alternative 3'splice site as HAS1Vd. For transfected constructs with unaltered introns 3 and 4, HAS1Vd transcripts are readily detectable, frequently to the exclusion of HAS1Vb. In contrast, in MM patients, HAS1Vb is more frequent than HAS1Vd. In the HAS1 minigene, combining deletion in intron 4 with mutations in intron 3 leads to a shift from HAS1Vd expression to HAS1Vb expression. The upregulation of aberrant splicing, exemplified here by the expression of HAS1Vb, is shown here to be influenced by multiple genetic changes in intronic sequences. For HAS1Vb, this includes enhanced exon 4 skipping and increased usage of alternative 3' splice sites. Thus, the combination of introduced mutations in HAS1 intron3 with introduced deletions in HAS1 intron 4 promoted a shift to an aberrant splicing pattern previously shown to be clinically significant. Most MM patients harbor genetic variations in intron 4, and as shown here, nearly half harbor recurrent mutations in HAS1 intron 3. Our work suggests that aberrant intronic HAS1 splicing in MM patients may rely on intronic HAS1 deletions and mutations that are frequent in MM patients but absent from healthy donors.