Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798323

RESUMO

SARS-CoV-2 targets salivary glands potentially impacting oral health. We show that presence of replicating viruses in the acinar cells of salivary glands compromises production and secretion of histatin-5, a key host-produced antifungal peptide. The salivary levels of histatin-5 were significantly reduced in SARS-CoV-2 infected subjects, concomitant with enhanced prevalence of the fungal opportunistic pathogen Candida albicans. These findings provide direct evidence associating SARS-CoV-2 infection with predisposition to oral candidiasis.

2.
Front Oncol ; 14: 1367962, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715784

RESUMO

Introduction: Prostate-specific membrane antigen (PSMA) is present in high amounts in salivary glands, but it is unclear whether labeled binders of PSMA are excreted in the saliva. Methods: Ten patients with prostate cancer underwent whole-body [18F]DCFPyL PET/CT (NCT03181867), and saliva samples were collected between 0-120 minutes post-injection. [18F]DCFPyL salivary excretion was measured over 120 minutes and expressed as %ID/g. Protein-associated binding was estimated by the percentage of [18F]DCFPyL versus parent radiotracer. Results: All PET scans of 10 patients (69 ± 8 years) with histologically confirmed prostate cancer (PSA= 2.4 ± 2.4, and Gleason Grade = 6-9) showed high uptake of [18F]-DCFPyL in salivary glands while 8 patients demonstrated high uptake in the saliva at 45 minutes. The intact [18F]-DCFPyL (98%) was also confirmed in the saliva samples at 120 min with increasing salivary radioactivity between 30-120 min. Conclusion: Systemically injected [18F]DCFPyL shows salivary gland uptake, an increasing amount of which is secreted in saliva over time and is not maximized by 120 minutes post-injection. Although probably insignificant for diagnostic studies, patients undergoing PSMA-targeted therapies should be aware of radioactivity in saliva.

3.
N Engl J Med ; 390(20): 1873-1884, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38810185

RESUMO

BACKGROUND: Autoimmune polyendocrine syndrome type 1 (APS-1) is a life-threatening, autosomal recessive syndrome caused by autoimmune regulator (AIRE) deficiency. In APS-1, self-reactive T cells escape thymic negative selection, infiltrate organs, and drive autoimmune injury. The effector mechanisms governing T-cell-mediated damage in APS-1 remain poorly understood. METHODS: We examined whether APS-1 could be classified as a disease mediated by interferon-γ. We first assessed patients with APS-1 who were participating in a prospective natural history study and evaluated mRNA and protein expression in blood and tissues. We then examined the pathogenic role of interferon-γ using Aire-/-Ifng-/- mice and Aire-/- mice treated with the Janus kinase (JAK) inhibitor ruxolitinib. On the basis of our findings, we used ruxolitinib to treat five patients with APS-1 and assessed clinical, immunologic, histologic, transcriptional, and autoantibody responses. RESULTS: Patients with APS-1 had enhanced interferon-γ responses in blood and in all examined autoimmunity-affected tissues. Aire-/- mice had selectively increased interferon-γ production by T cells and enhanced interferon-γ, phosphorylated signal transducer and activator of transcription 1 (pSTAT1), and CXCL9 signals in multiple organs. Ifng ablation or ruxolitinib-induced JAK-STAT blockade in Aire-/- mice normalized interferon-γ responses and averted T-cell infiltration and damage in organs. Ruxolitinib treatment of five patients with APS-1 led to decreased levels of T-cell-derived interferon-γ, normalized interferon-γ and CXCL9 levels, and remission of alopecia, oral candidiasis, nail dystrophy, gastritis, enteritis, arthritis, Sjögren's-like syndrome, urticaria, and thyroiditis. No serious adverse effects from ruxolitinib were identified in these patients. CONCLUSIONS: Our findings indicate that APS-1, which is caused by AIRE deficiency, is characterized by excessive, multiorgan interferon-γ-mediated responses. JAK inhibition with ruxolitinib in five patients showed promising results. (Funded by the National Institute of Allergy and Infectious Diseases and others.).


Assuntos
Proteína AIRE , Interferon gama , Inibidores de Janus Quinases , Poliendocrinopatias Autoimunes , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Proteína AIRE/deficiência , Proteína AIRE/genética , Proteína AIRE/imunologia , Autoanticorpos/sangue , Autoanticorpos/imunologia , Quimiocina CXCL9/genética , Interferon gama/genética , Interferon gama/imunologia , Inibidores de Janus Quinases/uso terapêutico , Camundongos Knockout , Nitrilas/uso terapêutico , Poliendocrinopatias Autoimunes/genética , Poliendocrinopatias Autoimunes/tratamento farmacológico , Poliendocrinopatias Autoimunes/imunologia , Pirazóis/uso terapêutico , Pirazóis/farmacologia , Pirimidinas/uso terapêutico , Linfócitos T/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Projetos Piloto , Modelos Animais de Doenças , Criança , Adolescente , Pessoa de Meia-Idade
4.
Ann Rheum Dis ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527764

RESUMO

OBJECTIVES: Inflammatory cytokines that signal through the Janus kinases-signal transducer and activator of transcription (JAK-STAT) pathway, especially interferons (IFNs), are implicated in Sjögren's disease (SjD). Although inhibition of JAKs is effective in other autoimmune diseases, a systematic investigation of IFN-JAK-STAT signalling and the effect of JAK inhibitor (JAKi) therapy in SjD-affected human tissues has not been fully investigated. METHODS: Human minor salivary glands (MSGs) and peripheral blood mononuclear cells (PBMCs) were investigated using bulk or single-cell (sc) RNA sequencing (RNAseq), immunofluorescence (IF) microscopy and flow cytometry. Ex vivo culture assays on PBMCs and primary salivary gland epithelial cell (pSGEC) lines were performed to model changes in target tissues before and after JAKi. RESULTS: RNAseq and IF showed activated JAK-STAT pathway in SjD MSGs. Elevated IFN-stimulated gene (ISGs) expression associated with clinical variables (eg, focus scores, anti-SSA positivity). scRNAseq of MSGs exhibited cell type-specific upregulation of JAK-STAT and ISGs; PBMCs showed similar trends, including markedly upregulated ISGs in monocytes. Ex vivo studies showed elevated basal pSTAT levels in SjD MSGs and PBMCs that were corrected with JAKi. SjD-derived pSGECs exhibited higher basal ISG expressions and exaggerated responses to IFN-ß, which were normalised by JAKi without cytotoxicity. CONCLUSIONS: SjD patients' tissues exhibit increased expression of ISGs and activation of the JAK-STAT pathway in a cell type-dependent manner. JAKi normalises this aberrant signalling at the tissue level and in PBMCs, suggesting a putative viable therapy for SjD, targeting both glandular and extraglandular symptoms. Predicated on these data, a phase Ib/IIa randomised controlled trial to treat SjD with tofacitinib was initiated.

5.
Arthritis Rheumatol ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472139

RESUMO

OBJECTIVE: Lysosome-associated membrane protein 3 (LAMP3) misexpression in salivary gland epithelial cells plays a causal role in the development of salivary gland dysfunction and autoimmunity associated with Sjögren's disease (SjD). This study aimed to clarify how epithelial LAMP3 misexpression is induced in SjD. METHODS: To explore upstream signaling pathways associated with LAMP3 expression, we conducted multiple RNA sequencing analyses of minor salivary glands from patients with SjD, submandibular glands from a mouse model of SjD, and salivary gland epithelial cell lines. A hypothesis generated by the RNA sequencing analyses was further tested by in vitro and in vivo assays with gene manipulation. RESULTS: Transcriptome analysis suggested LAMP3 expression was associated with enhanced type I interferon (IFN) and IFNγ signaling pathways in patients with SjD. In vitro studies showed that type I IFN but not IFNγ stimulation could induce LAMP3 expression in salivary gland epithelial cells. Moreover, we discovered that LAMP3 overexpression could induce ectopic Toll-like receptor 7 (TLR-7) expression and type I IFN production in salivary gland epithelial cells both in vitro and in vivo. TLR-7 knockout mice did not develop any SjD-related symptoms following LAMP3 induction. CONCLUSION: Epithelial LAMP3 misexpression can be induced through enhanced type I IFN response in salivary glands. In addition, LAMP3 can promote type I IFN production via ectopic TLR-7 expression in salivary gland epithelial cells. This positive feedback loop can contribute to maintaining LAMP3 misexpression and amplifying type I IFN production in salivary glands, which plays an essential role in the pathophysiology of SjD.

6.
Semin Arthritis Rheum ; 65: 152378, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38310657

RESUMO

Sjögren's disease (SjD) is a systemic autoimmune exocrinopathy with key features of dryness, pain, and fatigue. SjD can affect any organ system with a variety of presentations across individuals. This heterogeneity is one of the major barriers for developing effective disease modifying treatments. Defining core disease domains comprising both specific clinical features and incorporating the patient experience is a critical first step to define this complex disease. The OMERACT SjD Working Group held its first international collaborative hybrid meeting in 2023, applying the OMERACT 2.2 filter toward identification of core domains. We accomplished our first goal, a scoping literature review that was presented at the Special Interest Group held in May 2023. Building on the domains identified in the scoping review, we uniquely deployed multidisciplinary experts as part of our collaborative team to generate a provisional domain list that captures SjD heterogeneity.


Assuntos
Síndrome de Sjogren , Humanos , Resultado do Tratamento , Síndrome de Sjogren/terapia , Dor , Fadiga
7.
Expert Rev Clin Immunol ; 20(1): 1-19, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37823475

RESUMO

INTRODUCTION: The symptom of dry mouth has multiple potential etiologies and can be a diagnostic clue to the presence of common systemic diseases encountered in rheumatology practice. The presence of decreased saliva flow (i.e. salivary hypofunction) defines a subset of dry mouth patients in whom there may be reversible drug effects, an iatrogenic insult such as head and neck irradiation, or a disease that directly involves the salivary glands (e.g. Sjögren's disease). The assessment of salivary hypofunction includes sialometry, salivary gland imaging, salivary gland biopsy, and an assessment for relevant systemic diseases. Optimal management of dry mouth requires accurate definition of its cause, followed by general measures that serve to alleviate its symptoms and prevent its complications. AREAS COVERED: Through a literature search on xerostomia and salivary hypofunction, we provide an overview of the causes of dry mouth, highlight the potential impact of salivary hypofunction on oral and systemic health, detail routine evaluation methods and treatment strategies, and emphasize the importance of collaboration with oral health care providers. EXPERT OPINION: Our Expert Opinion is provided on unmet needs in the management of dry mouth and relevant research progress in the field.


Assuntos
Reumatologia , Síndrome de Sjogren , Xerostomia , Humanos , Prova Pericial , Glândulas Salivares , Síndrome de Sjogren/complicações , Síndrome de Sjogren/diagnóstico , Síndrome de Sjogren/terapia , Xerostomia/diagnóstico , Xerostomia/etiologia , Xerostomia/terapia
8.
Cell ; 186(25): 5569-5586.e21, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38016469

RESUMO

CD4+ T cells play fundamental roles in orchestrating immune responses and tissue homeostasis. However, our inability to associate peptide human leukocyte antigen class-II (HLA-II) complexes with their cognate T cell receptors (TCRs) in an unbiased manner has hampered our understanding of CD4+ T cell function and role in pathologies. Here, we introduce TScan-II, a highly sensitive genome-scale CD4+ antigen discovery platform. This platform seamlessly integrates the endogenous HLA-II antigen-processing machinery in synthetic antigen-presenting cells and TCR signaling in T cells, enabling the simultaneous screening of multiple HLAs and TCRs. Leveraging genome-scale human, virome, and epitope mutagenesis libraries, TScan-II facilitates de novo antigen discovery and deep exploration of TCR specificity. We demonstrate TScan-II's potential for basic and translational research by identifying a non-canonical antigen for a cancer-reactive CD4+ T cell clone. Additionally, we identified two antigens for clonally expanded CD4+ T cells in Sjögren's disease, which bind distinct HLAs and are expressed in HLA-II-positive ductal cells within affected salivary glands.


Assuntos
Linfócitos T CD4-Positivos , Epitopos de Linfócito T , Humanos , Células Apresentadoras de Antígenos , Antígenos CD4/metabolismo , Antígenos HLA/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linhagem Celular , Genoma Humano
9.
JCI Insight ; 8(24)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37676726

RESUMO

Sjögren's Disease (SjD) is a systemic autoimmune disease characterized by lymphocytic inflammation of the lacrimal and salivary glands (SG), dry eyes and mouth, and systemic symptoms. SARS-CoV-2 may trigger the development or progression of autoimmune diseases. To test this, we used a mouse model of SARS-CoV-2 infection and convalescent patients' blood and SG in order to understand the development of SjD-like autoimmunity after infection. First, SARS-CoV-2-infected human angiotensin-converting enzyme 2 (ACE2) transgenic mice exhibited decreased salivation, elevated antinuclear antibodies (ANA), and lymphocytic infiltration in the lacrimal and SG. The sera from patients with COVID-19 sera showed increased ANA (i.e., anti-SSA [Sjögren's-syndrome-related antigen A]/anti-Ro52 and anti-SSB [SS-antigen B]/anti-La). Male patients showed elevated anti-SSA compared with female patients, and female patients exhibited diverse ANA patterns. SG biopsies from convalescent COVID-19 patients were microscopically similar to SjD SG with focal lymphocytic infiltrates in 4 of 6 patients and 2 of 6 patients exhibiting focus scores of at least 2. Lastly, monoclonal antibodies produced in recovered patients blocked ACE2/spike interaction and cross-reacted with nuclear antigens. Our study shows a direct association between SARS-CoV-2 and SjD. Hallmark features of SjD-affected SGs were histologically indistinguishable from convalescent COVID-19 patients. The results implicate that SARS-CoV-2 could be an environmental trigger for SjD.


Assuntos
COVID-19 , Síndrome de Sjogren , Humanos , Camundongos , Masculino , Feminino , Animais , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2 , Camundongos Transgênicos , Fenótipo
10.
J Physiol ; 601(20): 4539-4556, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37724716

RESUMO

Currently, all salivary ducts (intercalated, striated and collecting) are assumed to function broadly in a similar manner, reclaiming ions that were secreted by the secretory acinar cells while preserving fluid volume and delivering saliva to the oral cavity. Nevertheless, there has been minimal investigation into the structural and functional differences between distinct types of salivary duct cells. Therefore, in this study, the expression profile of proteins involved in stimulus-secretion coupling, as well as the function of the intercalated duct (ID) and striated duct cells, was examined. Particular focus was placed on defining differences between distinct duct cell populations. To accomplish this, immunohistochemistry and in situ hybridization were utilized to examine the localization and expression of proteins involved in reabsorption and secretion of ions and fluid. Further, in vivo calcium imaging was employed to investigate cellular function. Based on the protein expression profile and functional data, marked differences between the IDs and striated ducts were observed. Specifically, the ID cells express proteins native to the secretory acinar cells while lacking proteins specifically expressed in the striated ducts. Further, the ID and striated duct cells display different calcium signalling characteristics, with the IDs responding to a neural stimulus in a manner similar to the acinar cells. Overall, our data suggest that the IDs have a distinct role in the secretory process, separate from the reabsorptive striated ducts. Instead, based on our evidence, the IDs express proteins found in secretory cells, generate calcium signals in a manner similar to acinar cells, and, therefore, are likely secretory cells. KEY POINTS: Current studies examining salivary intercalated duct cells are limited, with minimal documentation of the ion transport machinery and the overall role of the cells in fluid generation. Salivary intercalated duct cells are presumed to function in the same manner as other duct cells, reclaiming ions, maintaining fluid volume and delivering the final saliva to the oral cavity. Here we systematically examine the structure and function of the salivary intercalated duct cells using immunohistochemistry, in situ hybridization and by monitoring in vivo Ca2+ dynamics. Structural data revealed that the intercalated duct cells lack proteins vital for reabsorption and express proteins necessary for secretion. Ca2+ dynamics in the intercalated duct cells were consistent with those observed in secretory cells and resulted from GPCR-mediated IP3 production.


Assuntos
Cálcio , Células Epiteliais , Proteínas , Íons
11.
medRxiv ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37662351

RESUMO

Objectives: Inflammatory cytokines that signal through the JAK- STAT pathway, especially interferons (IFNs), are implicated in Sjögren's Disease (SjD). Although inhibition of JAKs is effective in other autoimmune diseases, a systematic investigation of IFN-JAK-STAT signaling and effect of JAK inhibitor (JAKi) therapy in SjD-affected human tissues has not been reported. Methods: Human minor salivary glands (MSGs) and peripheral blood mononuclear cells (PBMCs) were investigated using bulk or single cell (sc) RNA sequencing (RNAseq), immunofluorescence microscopy (IF), and flow cytometry. Ex vivo culture assays on PBMCs and primary salivary gland epithelial cell (pSGEC) lines were performed to model changes in target tissues before and after JAKi. Results: RNAseq and IF showed activated JAK-STAT pathway in SjD MSGs. Elevated IFN-stimulated gene (ISGs) expression associated with clinical variables (e.g., focus scores, anti-SSA positivity). scRNAseq of MSGs exhibited cell-type specific upregulation of JAK-STAT and ISGs; PBMCs showed similar trends, including markedly upregulated ISGs in monocytes. Ex vivo studies showed elevated basal pSTAT levels in SjD MSGs and PBMCs that were corrected with JAKi. SjD-derived pSGECs exhibited higher basal ISG expressions and exaggerated responses to IFNß, which were normalized by JAKi without cytotoxicity. Conclusions: SjD patients' tissues exhibit increased expression of ISGs and activation of the JAK-STAT pathway in a cell type-dependent manner. JAKi normalizes this aberrant signaling at the tissue level and in PBMCs, suggesting a putative viable therapy for SjD, targeting both glandular and extraglandular symptoms. Predicated on these data, a Phase Ib/IIa randomized controlled trial to treat SjD with tofacitinib was initiated.

12.
Arthritis Rheumatol ; 75(9): 1586-1598, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37096570

RESUMO

OBJECTIVE: Lysosome-associated membrane protein 3 (LAMP3) overexpression is implicated in the development and progression of Sjögren's disease (SjD) by inducing lysosomal membrane permeabilization (LMP) and apoptotic cell death in salivary gland epithelium. The aim of this study was to clarify the molecular details of LAMP3-induced lysosome-dependent cell death and to test lysosomal biogenesis as a therapeutic intervention. METHODS: Human labial minor salivary gland biopsies were analyzed using immunofluorescence staining for LAMP3 expression levels and galectin-3 puncta formation, a marker of LMP. Expression level of caspase 8, an initiator of LMP, was determined by Western blotting in cell culture. Galectin-3 puncta formation and apoptosis were evaluated in cell cultures and a mouse model treated with glucagon-like peptide 1 receptor (GLP-1R) agonists, a known promoter of lysosomal biogenesis. RESULTS: Galectin-3 puncta formation was more frequent in the salivary glands of SjD patients compared to control glands. The proportion of galectin-3 puncta-positive cells was positively correlated with LAMP3 expression levels in the glands. LAMP3 overexpression increased caspase 8 expression, and knockdown of caspase 8 decreased galectin-3 puncta formation and apoptosis in LAMP3-overexpressing cells. Inhibition of autophagy increased caspase 8 expression, while restoration of lysosomal function using GLP-1R agonists decreased caspase 8 expression, which reduced galectin-3 puncta formation and apoptosis in both LAMP3-overexpressing cells and mice. CONCLUSION: LAMP3 overexpression induced lysosomal dysfunction, resulting in lysosome-dependent cell death via impaired autophagic caspase 8 degradation, and restoring lysosomal function using GLP-1R agonists could prevent this. These findings suggested that LAMP3-induced lysosomal dysfunction is central to disease development and is a target for therapeutic intervention in SjD.


Assuntos
Galectina 3 , Síndrome de Sjogren , Animais , Humanos , Camundongos , Autofagia , Caspase 8/metabolismo , Morte Celular , Galectina 3/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia , Glândulas Salivares/metabolismo , Síndrome de Sjogren/patologia
13.
Am J Pathol ; 193(11): 1809-1816, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36963628

RESUMO

Ophthalmic manifestations and tissue tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported in association with coronavirus disease 2019 (COVID-19), but the pathology and cellular localization of SARS-CoV-2 are not well characterized. The objective of this study was to evaluate macroscopic and microscopic changes and investigate cellular localization of SARS-CoV-2 across ocular tissues at autopsy. Ocular tissues were obtained from 25 patients with COVID-19 at autopsy. SARS-CoV-2 nucleocapsid gene RNA was previously quantified by droplet digital PCR from one eye. Herein, contralateral eyes from 21 patients were fixed in formalin and subject to histopathologic examination. Sections of the droplet digital PCR-positive eyes from four other patients were evaluated by in situ hybridization to determine the cellular localization of SARS-CoV-2 spike gene RNA. Histopathologic abnormalities, including cytoid bodies, vascular changes, and retinal edema, with minimal or no inflammation in ocular tissues were observed in all 21 cases evaluated. In situ hybridization localized SARS-CoV-2 RNA to neuronal cells of the retinal inner and outer layers, ganglion cells, corneal epithelia, scleral fibroblasts, and oligodendrocytes of the optic nerve. In conclusion, a range of common histopathologic alterations were identified within ocular tissue, and SARS-CoV-2 RNA was localized to multiple cell types. Further studies will be required to determine whether the alterations observed were caused by SARS-CoV-2 infection, the host immune response, and/or preexisting comorbidities.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Autopsia , RNA Viral/análise , Inflamação
14.
PLoS One ; 18(2): e0282227, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36821638

RESUMO

Hydroxychloroquine (HCQ) is a lysosomotropic agent that is commonly used for treating Sjögren's disease (SjD). However, its efficacy is controversial because of the divergent response to the drug among patients. In a subgroup of SjD patients, lysosome-associated membrane protein 3 (LAMP3) is elevated in expression in the salivary glands and promotes lysosomal dysregulation and lysosome-dependent apoptotic cell death. In this study, chloroquine (CQ) and its derivative HCQ were tested for their ability to prevent LAMP3-induced apoptosis, in vitro and on a mouse model of SjD. In addition, efficacy of HCQ treatment was retrospectively compared between high LAMP3 mRNA expression in minor salivary glands and those with LAMP3 mRNA levels comparable with healthy controls. Study results show that CQ treatment stabilized the lysosomal membrane in LAMP3-overexpressing cells via deactivation of cathepsin B, resulting in decreased apoptotic cell death. In mice with established SjD-like phenotype, HCQ treatment also significantly decreased apoptotic cell death and ameliorated salivary gland hypofunction. Retrospective analysis of SjD patients found that HCQ tended to be more effective in improving disease activity index, symptom severity and hypergammaglobulinemia in patients with high LAMP3 expression compared those with normal LAMP3 expression. Taken together, these findings suggested that by determining salivary gland LAMP3 mRNA level, a patient's response to HCQ treatment could be predicted. This finding may provide a novel strategy for guiding the development of more personalized medicine for SjD.


Assuntos
Hidroxicloroquina , Proteínas de Membrana Lisossomal , Síndrome de Sjogren , Animais , Camundongos , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Cloroquina/metabolismo , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Hidroxicloroquina/metabolismo , Estudos Retrospectivos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Glândulas Salivares/metabolismo , Síndrome de Sjogren/tratamento farmacológico , Síndrome de Sjogren/genética , Síndrome de Sjogren/metabolismo , Proteínas de Membrana Lisossomal/genética
15.
Sci Rep ; 13(1): 2595, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788255

RESUMO

Sjögren's disease (SjD) is an autoimmune disease that affects exocrine tissues and is characterized by increased apoptosis in salivary and lacrimal glands. Although the pathogenic mechanism triggering SjD is not well understood, overexpression of lysosome-associated membrane protein 3 (LAMP3) is associated with the disease in a subset of SjD patients and the development of SjD-like phenotype in mice. In this study, histological analysis of minor salivary glands of SjD patients suggested that LAMP3-containing material is being ejected from cells. Follow-on in vitro experiments with cells exposed to extracellular particles (EPs) derived from LAMP3-overexpressing cells showed increased apoptosis. Proteomics identified LAMP3 as a major component of EPs derived from LAMP3-overexpressing cells. Live-cell imaging visualized release and uptake of LAMP3-containing EPs from LAMP3-overexpressing cells to naïve cells. Furthermore, experiments with recombinant LAMP3 protein alone or complexed with Xfect protein transfection reagent demonstrated that internalization of LAMP3 was required for apoptosis in a caspase-dependent pathway. Taken together, we identified a new role for extracellular LAMP3 in cell-to-cell communication via EPs, which provides further support for targeting LAMP3 as a therapeutic approach in SjD.


Assuntos
Doenças Autoimunes , Aparelho Lacrimal , Proteínas de Membrana Lisossomal , Síndrome de Sjogren , Apoptose , Aparelho Lacrimal/patologia , Glândulas Salivares Menores/patologia , Síndrome de Sjogren/patologia , Humanos
16.
J Am Dent Assoc ; 154(3): 194-205, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36710158

RESUMO

BACKGROUND: Autopsy has benefited the practice of medicine for centuries; however, its use to advance the practice of oral health care is relatively limited. In the era of precision oral medicine, the research autopsy is poised to play an important role in understanding oral-systemic health, including infectious disease, autoimmunity, craniofacial genetics, and cancer. TYPES OF STUDIES REVIEWED: The authors reviewed relevant articles that used medical and dental research autopsies to summarize the advantages of minimally invasive autopsies of dental, oral, and craniofacial tissues and to outline practices for supporting research autopsies of the oral and craniofacial complex. RESULTS: The authors provide a historical summary of research autopsy in dentistry and provide a perspective on the value of autopsies for high-resolution multiomic studies to benefit precision oral medicine. As the promise of high-resolution multiomics is being realized, there is a need to integrate the oral and craniofacial complex into the practice of autopsy in medicine. Furthermore, the collaboration of autopsy centers with researchers will accelerate the understanding of dental, oral, and craniofacial tissues as part of the whole body. CONCLUSIONS: Autopsies must integrate oral and craniofacial tissues as part of biobanking procedures. As new technologies allow for high-resolution, multimodal phenotyping of human samples, using optimized sampling procedures will allow for unprecedented understanding of common and rare dental, oral, and craniofacial diseases in the future. PRACTICAL IMPLICATIONS: The COVID-19 pandemic highlighted the oral cavity as a site for viral infection and transmission potential; this was only discovered via clinical autopsies. The realization of the integrated autopsy's value in full body health initiatives will benefit patients across the globe.


Assuntos
Bancos de Espécimes Biológicos , COVID-19 , Humanos , Autopsia , Pandemias , Saúde Bucal
17.
Ann Rheum Dis ; 82(2): 246-252, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36008132

RESUMO

OBJECTIVES: In dermatomyositis (DM), autoantibodies are associated with unique clinical phenotypes. For example, anti-TIF1γ autoantibodies are associated with an increased risk of cancer. The purpose of this study was to discover novel DM autoantibodies. METHODS: Phage ImmunoPrecipitation Sequencing using sera from 43 patients with DM suggested that transcription factor Sp4 is a novel autoantigen; this was confirmed by showing that patient sera immunoprecipitated full-length Sp4 protein. Sera from 371 Johns Hopkins patients with myositis (255 with DM, 28 with antisynthetase syndrome, 40 with immune-mediated necrotising myopathy, 29 with inclusion body myositis and 19 with polymyositis), 80 rheumatological disease controls (25 with Sjogren's syndrome, 25 with systemic lupus erythematosus and 30 with rheumatoid arthritis (RA)) and 200 healthy comparators were screened for anti-SP4 autoantibodies by ELISA. A validation cohort of 46 anti-TIF1γ-positive patient sera from the University of Pittsburgh was also screened for anti-Sp4 autoantibodies. RESULTS: Anti-Sp4 autoantibodies were present in 27 (10.5%) patients with DM and 1 (3.3%) patient with RA but not in other clinical groups. In patients with DM, 96.3% of anti-Sp4 autoantibodies were detected in those with anti-TIF1γ autoantibodies. Among 26 TIF1γ-positive patients with anti-Sp4 autoantibodies, none (0%) had cancer. In contrast, among 35 TIF1γ-positive patients without anti-Sp4 autoantibodies, 5 (14%, p=0.04) had cancer. In the validation cohort, among 15 TIF1γ-positive patients with anti-Sp4 autoantibodies, 2 (13.3%) had cancer. By comparison, among 31 TIF1γ-positive patients without anti-Sp4 autoantibodies, 21 (67.7%, p<0.001) had cancer. CONCLUSIONS: Anti-Sp4 autoantibodies appear to identify a subgroup of anti-TIF1γ-positive DM patients with lower cancer risk.


Assuntos
Artrite Reumatoide , Dermatomiosite , Miosite , Neoplasias , Humanos , Autoanticorpos , Fator de Transcrição Sp4
18.
Res Sq ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38196575

RESUMO

Sjögren's Disease (SjD) is a systemic autoimmune disease without a clear etiology or effective therapy. Utilizing unbiased single-cell and spatial transcriptomics to analyze human minor salivary glands in health and disease we developed a comprehensive understanding of the cellular landscape of healthy salivary glands and how that landscape changes in SjD patients. We identified novel seromucous acinar cell types and identified a population of PRR4+CST3+WFDC2- seromucous acinar cells that are particularly targeted in SjD. Notably, GZMK+CD8 T cells, enriched in SjD, exhibited a cytotoxic phenotype and were physically associated with immune-engaged epithelial cells in disease. These findings shed light on the immune response's impact on transitioning acinar cells with high levels of secretion and explain the loss of this specific cell population in SjD. This study explores the complex interplay of varied cell types in the salivary glands and their role in the pathology of Sjögren's Disease.

19.
medRxiv ; 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36324812

RESUMO

Objectives: Sjögren's Disease (SjD) is a chronic and systemic autoimmune disease characterized by lymphocytic infiltration and the development of dry eyes and dry mouth resulting from the secretory dysfunction of the exocrine glands. SARS-CoV-2 may trigger the development or progression of autoimmune diseases, as evidenced by increased autoantibodies in patients and the presentation of cardinal symptoms of SjD. The objective of the study was to determine whether SARS-CoV-2 induces the signature clinical symptoms of SjD. Methods: The ACE2-transgenic mice were infected with SARS-CoV-2. SJD profiling was conducted. COVID-19 patients' sera were examined for autoantibodies. Clinical evaluations of convalescent COVID-19 subjects, including minor salivary gland (MSG) biopsies, were collected. Lastly, monoclonal antibodies generated from single B cells of patients were interrogated for ACE2/spike inhibition and nuclear antigens. Results: Mice infected with the virus showed a decreased saliva flow rate, elevated antinuclear antibodies (ANAs) with anti-SSB/La, and lymphocyte infiltration in the lacrimal and salivary glands. Sera of COVID-19 patients showed an increase in ANA, anti-SSA/Ro52, and anti-SSB/La. The male patients showed elevated levels of anti-SSA/Ro52 compared to female patients, and female patients had more diverse ANA patterns. Minor salivary gland biopsies of convalescent COVID-19 subjects showed focal lymphocytic infiltrates in four of six subjects, and 2 of 6 subjects had focus scores >2. Lastly, we found monoclonal antibodies produced in recovered patients can both block ACE2/spike interaction and recognize nuclear antigens. Conclusion: Overall, our study shows a direct association between SARS-CoV-2 and SjD. Hallmark features of SjD salivary glands were histologically indistinguishable from convalescent COVID-19 subjects. The results potentially implicate that SARS-CoV-2 could be an environmental trigger for SjD. Key Messages: What is already known about this subject?SAR-CoV-2 has a tropism for the salivary glands. However, whether the virus can induce clinical phenotypes of Sjögren's disease is unknown.What does this study add?Mice infected with SAR-CoV-2 showed loss of secretory function, elevated autoantibodies, and lymphocyte infiltration in glands.COVID-19 patients showed an increase in autoantibodies. Monoclonal antibodies produced in recovered patients can block ACE2/spike interaction and recognize nuclear antigens.Minor salivary gland biopsies of some convalescent subjects showed focal lymphocytic infiltrates with focus scores.How might this impact on clinical practice or future developments?Our data provide strong evidence for the role of SARS-CoV-2 in inducing Sjögren's disease-like phenotypes.Our work has implications for how patients will be diagnosed and treated effectively.

20.
Sci Rep ; 12(1): 18570, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329045

RESUMO

Sjögren's disease (SjD) is a chronic autoimmune sialadenitis resulting in salivary gland hypofunction with dry mouth symptom. Previous studies showed that lysosome-associated membrane protein 3 (LAMP3) overexpression is involved in the development of salivary gland hypofunction associated with SjD. However, the molecular mechanisms are still unclear, and no effective treatment exists to reverse gland function in SjD. Analysis on salivary gland samples from SjD patients showed that salivary gland hypofunction was associated with decreased expression of sodium-potassium-chloride cotransporter-1 (NKCC1) and aquaporin 5 (AQP5), which are membrane proteins involved in salivation. Further studies revealed that LAMP3 overexpression decreased their expression levels by promoting endolysosomal degradation. Additionally, we found that LAMP3 overexpression enhanced gene transfer by increasing internalization of adeno-associated virus serotype 2 (AAV2) via the promoted endolysosomal pathway. Retrograde cannulation of AAV2 vectors encoding AQP1 gene (AAV2-AQP1) into salivary glands induced glandular AQP1 expression sufficient to restore salivary flow in LAMP3-overexpressing mice. LAMP3 could play a critical role in the development of salivary gland hypofunction in SjD by promoting endolysosomal degradation of NKCC1 and AQP5. But it also could enhance AAV2-mediated gene transfer to restore fluid movement through induction of AQP1 expression. These findings suggested that AAV2-AQP1 gene therapy is useful in reversing salivary gland function in SjD patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA