Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Nature ; 629(8013): 851-860, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38560995

RESUMO

Despite tremendous efforts in the past decades, relationships among main avian lineages remain heavily debated without a clear resolution. Discrepancies have been attributed to diversity of species sampled, phylogenetic method and the choice of genomic regions1-3. Here we address these issues by analysing the genomes of 363 bird species4 (218 taxonomic families, 92% of total). Using intergenic regions and coalescent methods, we present a well-supported tree but also a marked degree of discordance. The tree confirms that Neoaves experienced rapid radiation at or near the Cretaceous-Palaeogene boundary. Sufficient loci rather than extensive taxon sampling were more effective in resolving difficult nodes. Remaining recalcitrant nodes involve species that are a challenge to model due to either extreme DNA composition, variable substitution rates, incomplete lineage sorting or complex evolutionary events such as ancient hybridization. Assessment of the effects of different genomic partitions showed high heterogeneity across the genome. We discovered sharp increases in effective population size, substitution rates and relative brain size following the Cretaceous-Palaeogene extinction event, supporting the hypothesis that emerging ecological opportunities catalysed the diversification of modern birds. The resulting phylogenetic estimate offers fresh insights into the rapid radiation of modern birds and provides a taxon-rich backbone tree for future comparative studies.


Assuntos
Aves , Evolução Molecular , Genoma , Filogenia , Animais , Aves/genética , Aves/classificação , Aves/anatomia & histologia , Encéfalo/anatomia & histologia , Extinção Biológica , Genoma/genética , Genômica , Densidade Demográfica , Masculino , Feminino
2.
Algorithms Mol Biol ; 18(1): 21, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062452

RESUMO

BACKGROUND: Adding sequences into an existing (possibly user-provided) alignment has multiple applications, including updating a large alignment with new data, adding sequences into a constraint alignment constructed using biological knowledge, or computing alignments in the presence of sequence length heterogeneity. Although this is a natural problem, only a few tools have been developed to use this information with high fidelity. RESULTS: We present EMMA (Extending Multiple alignments using MAFFT--add) for the problem of adding a set of unaligned sequences into a multiple sequence alignment (i.e., a constraint alignment). EMMA builds on MAFFT--add, which is also designed to add sequences into a given constraint alignment. EMMA improves on MAFFT--add methods by using a divide-and-conquer framework to scale its most accurate version, MAFFT-linsi--add, to constraint alignments with many sequences. We show that EMMA has an accuracy advantage over other techniques for adding sequences into alignments under many realistic conditions and can scale to large datasets with high accuracy (hundreds of thousands of sequences). EMMA is available at https://github.com/c5shen/EMMA . CONCLUSIONS: EMMA is a new tool that provides high accuracy and scalability for adding sequences into an existing alignment.

3.
J Comput Biol ; 30(11): 1146-1181, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37902986

RESUMO

We address the problem of rooting an unrooted species tree given a set of unrooted gene trees, under the assumption that gene trees evolve within the model species tree under the multispecies coalescent (MSC) model. Quintet Rooting (QR) is a polynomial time algorithm that was recently proposed for this problem, which is based on the theory developed by Allman, Degnan, and Rhodes that proves the identifiability of rooted 5-taxon trees from unrooted gene trees under the MSC. However, although QR had good accuracy in simulations, its statistical consistency was left as an open problem. We present QR-STAR, a variant of QR with an additional step and a different cost function, and prove that it is statistically consistent under the MSC. Moreover, we derive sample complexity bounds for QR-STAR and show that a particular variant of it based on "short quintets" has polynomial sample complexity. Finally, our simulation study under a variety of model conditions shows that QR-STAR matches or improves on the accuracy of QR. QR-STAR is available in open-source form on github.


Assuntos
Algoritmos , Modelos Genéticos , Filogenia , Simulação por Computador
4.
Algorithms Mol Biol ; 18(1): 6, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468904

RESUMO

BACKGROUND: Species tree estimation is a basic step in many biological research projects, but is complicated by the fact that gene trees can differ from the species tree due to processes such as incomplete lineage sorting (ILS), gene duplication and loss (GDL), and horizontal gene transfer (HGT), which can cause different regions within the genome to have different evolutionary histories (i.e., "gene tree heterogeneity"). One approach to estimating species trees in the presence of gene tree heterogeneity resulting from ILS operates by computing trees on each genomic region (i.e., computing "gene trees") and then using these gene trees to define a matrix of average internode distances, where the internode distance in a tree T between two species x and y is the number of nodes in T between the leaves corresponding to x and y. Given such a matrix, a tree can then be computed using methods such as neighbor joining. Methods such as ASTRID and NJst (which use this basic approach) are provably statistically consistent, very fast (low degree polynomial time) and have had high accuracy under many conditions that makes them competitive with other popular species tree estimation methods. In this study, inspired by the very recent work of weighted ASTRAL, we present weighted ASTRID, a variant of ASTRID that takes the branch uncertainty on the gene trees into account in the internode distance. RESULTS: Our experimental study evaluating weighted ASTRID typically shows improvements in accuracy compared to the original (unweighted) ASTRID, and shows competitive accuracy against weighted ASTRAL, the state of the art. Our re-implementation of ASTRID also improves the runtime, with marked improvements on large datasets. CONCLUSIONS: Weighted ASTRID is a new and very fast method for species tree estimation that typically improves upon ASTRID and has comparable accuracy to weighted ASTRAL, while remaining much faster. Weighted ASTRID is available at https://github.com/RuneBlaze/internode .

5.
Bioinformatics ; 39(39 Suppl 1): i185-i193, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37387151

RESUMO

MOTIVATION: Branch lengths and topology of a species tree are essential in most downstream analyses, including estimation of diversification dates, characterization of selection, understanding adaptation, and comparative genomics. Modern phylogenomic analyses often use methods that account for the heterogeneity of evolutionary histories across the genome due to processes such as incomplete lineage sorting. However, these methods typically do not generate branch lengths in units that are usable by downstream applications, forcing phylogenomic analyses to resort to alternative shortcuts such as estimating branch lengths by concatenating gene alignments into a supermatrix. Yet, concatenation and other available approaches for estimating branch lengths fail to address heterogeneity across the genome. RESULTS: In this article, we derive expected values of gene tree branch lengths in substitution units under an extension of the multispecies coalescent (MSC) model that allows substitutions with varying rates across the species tree. We present CASTLES, a new technique for estimating branch lengths on the species tree from estimated gene trees that uses these expected values, and our study shows that CASTLES improves on the most accurate prior methods with respect to both speed and accuracy. AVAILABILITY AND IMPLEMENTATION: CASTLES is available at https://github.com/ytabatabaee/CASTLES.


Assuntos
Evolução Biológica , Neoplasias Epiteliais e Glandulares , Humanos , Filogenia , Movimento Celular , Genômica
6.
Bioinform Adv ; 3(1): vbad052, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37128578

RESUMO

Motivation: Despite advances in method development for multiple sequence alignment over the last several decades, the alignment of datasets exhibiting substantial sequence length heterogeneity, especially when the input sequences include very short sequences (either as a result of sequencing technologies or of large deletions during evolution) remains an inadequately solved problem. Results: We present HMMerge, a method to compute an alignment of datasets exhibiting high sequence length heterogeneity, or to add short sequences into a given 'backbone' alignment. HMMerge builds on the technique from its predecessor alignment methods, UPP and WITCH, which build an ensemble of profile HMMs to represent the backbone alignment and add the remaining sequences into the backbone alignment using the ensemble. HMMerge differs from UPP and WITCH by building a new 'merged' HMM from the ensemble, and then using that merged HMM to align the query sequences. We show that HMMerge is competitive with WITCH, with an advantage over WITCH when adding very short sequences into backbone alignments. Availability and implementation: HMMerge is freely available at https://github.com/MinhyukPark/HMMerge. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

7.
Bioinform Adv ; 3(1): vbad024, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970502

RESUMO

Summary: Multiple sequence alignment is a basic part of many bioinformatics pipelines, including in phylogeny estimation, prediction of structure for both RNAs and proteins, and metagenomic sequence analysis. Yet many sequence datasets exhibit substantial sequence length heterogeneity, both because of large insertions and deletions in the evolutionary history of the sequences and the inclusion of unassembled reads or incompletely assembled sequences in the input. A few methods have been developed that can be highly accurate in aligning datasets with sequence length heterogeneity, with UPP one of the first methods to achieve good accuracy, and WITCH a recent improvement on UPP for accuracy. In this article, we show how we can speed up WITCH. Our improvement includes replacing a critical step in WITCH (currently performed using a heuristic search) by a polynomial time exact algorithm using Smith-Waterman. Our new method, WITCH-NG (i.e. 'next generation WITCH') achieves the same accuracy but is substantially faster. WITCH-NG is available at https://github.com/RuneBlaze/WITCH-NG. Availability and implementation: The datasets used in this study are from prior publications and are freely available in public repositories, as indicated in the Supplementary Materials. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

8.
Bioinform Adv ; 3(1): vbad015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36789293

RESUMO

Motivation: Genes evolve under processes such as gene duplication and loss (GDL), so that gene family trees are multi-copy, as well as incomplete lineage sorting (ILS); both processes produce gene trees that differ from the species tree. The estimation of species trees from sets of gene family trees is challenging, and the estimation of rooted species trees presents additional analytical challenges. Two of the methods developed for this problem are STRIDE, which roots species trees by considering GDL events, and Quintet Rooting (QR), which roots species trees by considering ILS. Results: We present DISCO+QR, a new approach to rooting species trees that first uses DISCO to address GDL and then uses QR to perform rooting in the presence of ILS. DISCO+QR operates by taking the input gene family trees and decomposing them into single-copy trees using DISCO and then roots the given species tree using the information in the single-copy gene trees using QR. We show that the relative accuracy of STRIDE and DISCO+QR depend on the properties of the dataset (number of species, genes, rate of gene duplication, degree of ILS and gene tree estimation error), and that each provides advantages over the other under some conditions. Availability and implementation: DISCO and QR are available in github. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

9.
Bioinform Adv ; 3(1): vbad008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818728

RESUMO

Summary: Phylogenetic placement is the problem of placing 'query' sequences into an existing tree (called a 'backbone tree'). One of the most accurate phylogenetic placement methods to date is the maximum likelihood-based method pplacer, using RAxML to estimate numeric parameters on the backbone tree and then adding the given query sequence to the edge that maximizes the probability that the resulting tree generates the query sequence. Unfortunately, this way of running pplacer fails to return valid outputs on many moderately large backbone trees and so is limited to backbone trees with at most ∼10 000 leaves. SCAMPP is a technique to enable pplacer to run on larger backbone trees, which operates by finding a small 'placement subtree' specific to each query sequence, within which the query sequence are placed using pplacer. That approach matched the scalability and accuracy of APPLES-2, the previous most scalable method. Here, we explore a different aspect of pplacer's strategy: the technique used to estimate numeric parameters on the backbone tree. We confirm anecdotal evidence that using FastTree instead of RAxML to estimate numeric parameters on the backbone tree enables pplacer to scale to much larger backbone trees, almost (but not quite) matching the scalability of APPLES-2 and pplacer-SCAMPP. We then evaluate the combination of these two techniques-SCAMPP and the use of FastTree. We show that this combined approach, pplacer-SCAMPP-FastTree, has the same scalability as APPLES-2, improves on the scalability of pplacer-FastTree and achieves better accuracy than the comparably scalable methods. Availability and implementation: https://github.com/gillichu/PLUSplacer-taxtastic. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

10.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36625535

RESUMO

MOTIVATION: Multiple sequence alignment (MSA) is a basic step in many bioinformatics pipelines. However, achieving highly accurate alignments on large datasets, especially those with sequence length heterogeneity, is a challenging task. Ultra-large multiple sequence alignment using Phylogeny-aware Profiles (UPP) is a method for MSA estimation that builds an ensemble of Hidden Markov Models (eHMM) to represent an estimated alignment on the full-length sequences in the input, and then adds the remaining sequences into the alignment using selected HMMs in the ensemble. Although UPP provides good accuracy, it is computationally intensive on large datasets. RESULTS: We present UPP2, a direct improvement on UPP. The main advance is a fast technique for selecting HMMs in the ensemble that allows us to achieve the same accuracy as UPP but with greatly reduced runtime. We show that UPP2 produces more accurate alignments compared to leading MSA methods on datasets exhibiting substantial sequence length heterogeneity and is among the most accurate otherwise. AVAILABILITY AND IMPLEMENTATION: https://github.com/gillichu/sepp. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software , Alinhamento de Sequência , Filogenia
11.
IEEE/ACM Trans Comput Biol Bioinform ; 20(3): 1700-1712, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35849662

RESUMO

MAGUS is a recent multiple sequence alignment method that provides excellent accuracy on large challenging datasets. MAGUS uses divide-and-conquer: it divides the sequences into disjoint sets, computes alignments on the disjoint sets, and then merges the alignments using a technique it calls the Graph Clustering Method (GCM). To understand why MAGUS is so accurate, we show that GCM is a good heuristic for the NP-hard MWT-AM problem (Maximum Weight Trace, adapted to the Alignment Merging problem). Our study, using both biological and simulated data, establishes that MWT-AM scores correlate very well with alignment accuracy and presents improvements to GCM that are even better heuristics for MWT-AM. This study suggests a new direction for large-scale MSA estimation based on improved divide-and-conquer strategies, with the merging step based on optimizing MWT-AM. MAGUS and its enhanced versions are available at https://github.com/vlasmirnov/MAGUS.


Assuntos
Algoritmos , Software , Alinhamento de Sequência , Heurística , Análise por Conglomerados
12.
IEEE/ACM Trans Comput Biol Bioinform ; 20(2): 1417-1430, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35471888

RESUMO

Phylogenetic placement, the problem of placing a "query" sequence into a precomputed phylogenetic "backbone" tree, is useful for constructing large trees, performing taxon identification of newly obtained sequences, and other applications. The most accurate current methods, such as pplacer and EPA-ng, are based on maximum likelihood and require that the query sequence be provided within a multiple sequence alignment that includes the leaf sequences in the backbone tree. This approach enables high accuracy but also makes these likelihood-based methods computationally intensive on large backbone trees, and can even lead to them failing when the backbone trees are very large (e.g., having 50,000 or more leaves). We present SCAMPP (SCaling AlignMent-based Phylogenetic Placement), a technique to extend the scalability of these likelihood-based placement methods to ultra-large backbone trees. We show that pplacer-SCAMPP and EPA-ng-SCAMPP both scale well to ultra-large backbone trees (even up to 200,000 leaves), with accuracy that improves on APPLES and APPLES-2, two recently developed fast phylogenetic placement methods that scale to ultra-large datasets. EPA-ng-SCAMPP and pplacer-SCAMPP are available at https://github.com/chry04/PLUSplacer.


Assuntos
Algoritmos , Software , Filogenia , Funções Verossimilhança , Alinhamento de Sequência
13.
Philos Trans R Soc Lond B Biol Sci ; 377(1861): 20210244, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35989607

RESUMO

With the increased availability of sequence data and even of fully sequenced and assembled genomes, phylogeny estimation of very large trees (even of hundreds of thousands of sequences) is now a goal for some biologists. Yet, the construction of these phylogenies is a complex pipeline presenting analytical and computational challenges, especially when the number of sequences is very large. In the past few years, new methods have been developed that aim to enable highly accurate phylogeny estimations on these large datasets, including divide-and-conquer techniques for multiple sequence alignment and/or tree estimation, methods that can estimate species trees from multi-locus datasets while addressing heterogeneity due to biological processes (e.g. incomplete lineage sorting and gene duplication and loss), and methods to add sequences into large gene trees or species trees. Here we present some of these recent advances and discuss opportunities for future improvements. This article is part of a discussion meeting issue 'Genomic population structures of microbial pathogens'.


Assuntos
Duplicação Gênica , Genômica , Genômica/métodos , Filogenia , Alinhamento de Sequência
14.
Bioinformatics ; 38(Suppl 1): i109-i117, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35758805

RESUMO

MOTIVATION: Rooted species trees are a basic model with multiple applications throughout biology, including understanding adaptation, biodiversity, phylogeography and co-evolution. Because most species tree estimation methods produce unrooted trees, methods for rooting these trees have been developed. However, most rooting methods either rely on prior biological knowledge or assume that evolution is close to clock-like, which is not usually the case. Furthermore, most prior rooting methods do not account for biological processes that create discordance between gene trees and species trees. RESULTS: We present Quintet Rooting (QR), a method for rooting species trees based on a proof of identifiability of the rooted species tree under the multi-species coalescent model established by Allman, Degnan and Rhodes (J. Math. Biol., 2011). We show that QR is generally more accurate than other rooting methods, except under extreme levels of gene tree estimation error. AVAILABILITY AND IMPLEMENTATION: Quintet Rooting is available in open source form at https://github.com/ytabatabaee/Quintet-Rooting. The simulated datasets used in this study are from a prior study and are available at https://www.ideals.illinois.edu/handle/2142/55319. The biological dataset used in this study is also from a prior study and is available at http://gigadb.org/dataset/101041. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Modelos Genéticos , Filogenia
15.
J Comput Biol ; 29(8): 782-801, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35575747

RESUMO

Accurate multiple sequence alignment is challenging on many data sets, including those that are large, evolve under high rates of evolution, or have sequence length heterogeneity. While substantial progress has been made over the last decade in addressing the first two challenges, sequence length heterogeneity remains a significant issue for many data sets. Sequence length heterogeneity occurs for biological and technological reasons, including large insertions or deletions (indels) that occurred in the evolutionary history relating the sequences, or the inclusion of sequences that are not fully assembled. Ultra-large alignments using Phylogeny-Aware Profiles (UPP) (Nguyen et al. 2015) is one of the most accurate approaches for aligning data sets that exhibit sequence length heterogeneity: it constructs an alignment on the subset of sequences it considers "full-length," represents this "backbone alignment" using an ensemble of hidden Markov models (HMMs), and then adds each remaining sequence into the backbone alignment based on an HMM selected for that sequence from the ensemble. Our new method, WeIghTed Consensus Hmm alignment (WITCH), improves on UPP in three important ways: first, it uses a statistically principled technique to weight and rank the HMMs; second, it uses k > 1 HMMs from the ensemble rather than a single HMM; and third, it combines the alignments for each of the selected HMMs using a consensus algorithm that takes the weights into account. We show that this approach provides improved alignment accuracy compared with UPP and other leading alignment methods, as well as improved accuracy for maximum likelihood trees based on these alignments.


Assuntos
Algoritmos , Consenso , Cadeias de Markov , Filogenia , Alinhamento de Sequência
16.
J Comput Biol ; 29(7): 664-678, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35196115

RESUMO

Species tree inference is a basic step in biological discovery, but discordance between gene trees creates analytical challenges and large data sets create computational challenges. Although there is generally some information available about the species trees that could be used to speed up the estimation, only one species tree estimation method that addresses gene tree discordance-ASTRAL-J, a recent development in the ASTRAL family of methods-is able to use this information. Here we describe two new methods, NJst-J and FASTRAL-J, that can estimate the species tree, given a partial knowledge of the species tree in the form of a nonbinary unrooted constraint tree. We show that both NJst-J and FASTRAL-J are much faster than ASTRAL-J and we prove that all three methods are statistically consistent under the multispecies coalescent model subject to this constraint. Our extensive simulation study shows that both FASTRAL-J and NJst-J provide advantages over ASTRAL-J: both are faster (and NJst-J is particularly fast), and FASTRAL-J is generally at least as accurate as ASTRAL-J. An analysis of the Avian Phylogenomics Project data set with 48 species and 14,446 genes presents additional evidence of the value of FASTRAL-J over ASTRAL-J (and both over ASTRAL), with dramatic reductions in running time (20 hours for default ASTRAL, and minutes or seconds for ASTRAL-J and FASTRAL-J, respectively).


Assuntos
Algoritmos , Especiação Genética , Simulação por Computador , Modelos Genéticos , Filogenia
17.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042801

RESUMO

Life on Earth has evolved from initial simplicity to the astounding complexity we experience today. Bacteria and archaea have largely excelled in metabolic diversification, but eukaryotes additionally display abundant morphological innovation. How have these innovations come about and what constraints are there on the origins of novelty and the continuing maintenance of biodiversity on Earth? The history of life and the code for the working parts of cells and systems are written in the genome. The Earth BioGenome Project has proposed that the genomes of all extant, named eukaryotes-about 2 million species-should be sequenced to high quality to produce a digital library of life on Earth, beginning with strategic phylogenetic, ecological, and high-impact priorities. Here we discuss why we should sequence all eukaryotic species, not just a representative few scattered across the many branches of the tree of life. We suggest that many questions of evolutionary and ecological significance will only be addressable when whole-genome data representing divergences at all of the branchings in the tree of life or all species in natural ecosystems are available. We envisage that a genomic tree of life will foster understanding of the ongoing processes of speciation, adaptation, and organismal dependencies within entire ecosystems. These explorations will resolve long-standing problems in phylogenetics, evolution, ecology, conservation, agriculture, bioindustry, and medicine.


Assuntos
Sequência de Bases/genética , Eucariotos/genética , Genômica/ética , Animais , Biodiversidade , Evolução Biológica , Ecologia , Ecossistema , Genoma , Genômica/métodos , Humanos , Filogenia
18.
J Comput Biol ; 29(1): 74-89, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986031

RESUMO

Deep neural networks (DNNs) have been recently proposed for quartet tree phylogeny estimation. Here, we present a study evaluating recently trained DNNs in comparison to a collection of standard phylogeny estimation methods on a heterogeneous collection of datasets simulated under the same models that were used to train the DNNs, and also under similar conditions but with higher rates of evolution. Our study shows that using DNNs with quartet amalgamation is less accurate than several standard phylogeny estimation methods we explore (e.g., maximum likelihood and maximum parsimony). We further find that simple standard phylogeny estimation methods match or improve on DNNs for quartet accuracy, especially, but not exclusively, when used in a global manner (i.e., the tree on the full dataset is computed and then the induced quartet trees are extracted from the full tree). Thus, our study provides evidence that a major challenge impacting the utility of current DNNs for phylogeny estimation is their restriction to estimating quartet trees that must subsequently be combined into a tree on the full dataset. In contrast, global methods (i.e., those that estimate trees from the full set of sequences) are able to benefit from taxon sampling, and hence have higher accuracy on large datasets.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Filogenia , Sequência de Aminoácidos , Classificação/métodos , Biologia Computacional , Simulação por Computador , Bases de Dados Genéticas/estatística & dados numéricos , Evolução Molecular
19.
Syst Biol ; 71(3): 610-629, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-34450658

RESUMO

Species tree inference from gene family trees is a significant problem in computational biology. However, gene tree heterogeneity, which can be caused by several factors including gene duplication and loss, makes the estimation of species trees very challenging. While there have been several species tree estimation methods introduced in recent years to specifically address gene tree heterogeneity due to gene duplication and loss (such as DupTree, FastMulRFS, ASTRAL-Pro, and SpeciesRax), many incur high cost in terms of both running time and memory. We introduce a new approach, DISCO, that decomposes the multi-copy gene family trees into many single copy trees, which allows for methods previously designed for species tree inference in a single copy gene tree context to be used. We prove that using DISCO with ASTRAL (i.e., ASTRAL-DISCO) is statistically consistent under the GDL model, provided that ASTRAL-Pro correctly roots and tags each gene family tree. We evaluate DISCO paired with different methods for estimating species trees from single copy genes (e.g., ASTRAL, ASTRID, and IQ-TREE) under a wide range of model conditions, and establish that high accuracy can be obtained even when ASTRAL-Pro is not able to correctly roots and tags the gene family trees. We also compare results using MI, an alternative decomposition strategy from Yang Y. and Smith S.A. (2014), and find that DISCO provides better accuracy, most likely as a result of covering more of the gene family tree leafset in the output decomposition. [Concatenation analysis; gene duplication and loss; species tree inference; summary method.].


Assuntos
Algoritmos , Duplicação Gênica , Biologia Computacional , Modelos Genéticos , Linhagem , Filogenia
20.
Bioinformatics ; 38(4): 918-924, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34791036

RESUMO

SUMMARY: Multiple sequence alignment is an initial step in many bioinformatics pipelines, including phylogeny estimation, protein structure prediction and taxonomic identification of reads produced in amplicon or metagenomic datasets, etc. Yet, alignment estimation is challenging on datasets that exhibit substantial sequence length heterogeneity, and especially when the datasets have fragmentary sequences as a result of including reads or contigs generated by next-generation sequencing technologies. Here, we examine techniques that have been developed to improve alignment estimation when datasets contain substantial numbers of fragmentary sequences. We find that MAGUS, a recently developed MSA method, is fairly robust to fragmentary sequences under many conditions, and that using a two-stage approach where MAGUS is used to align selected 'backbone sequences' and the remaining sequences are added into the alignment using ensembles of Hidden Markov Models further improves alignment accuracy. The combination of MAGUS with the ensemble of eHMMs (i.e. MAGUS+eHMMs) clearly improves on UPP, the previous leading method for aligning datasets with high levels of fragmentation. AVAILABILITY AND IMPLEMENTATION: UPP is available on https://github.com/smirarab/sepp, and MAGUS is available on https://github.com/vlasmirnov/MAGUS. MAGUS+eHMMs can be performed by running MAGUS to obtain the backbone alignment, and then using the backbone alignment as an input to UPP. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Proteínas , Alinhamento de Sequência , Proteínas/genética , Proteínas/química , Metagenoma , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA