Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Antimicrob Agents Chemother ; 65(12): e0078621, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34491801

RESUMO

Serratia marcescens, a member of the order Enterobacterales, is adept at colonizing health care environments and is an important cause of invasive infections. Antibiotic resistance is a daunting problem in S. marcescens because, in addition to plasmid-mediated mechanisms, most isolates have considerable intrinsic resistance to multiple antibiotic classes. To discover endogenous modifiers of antibiotic susceptibility in S. marcescens, a high-density transposon insertion library was subjected to sub-MICs of two cephalosporins, cefoxitin, and cefepime, as well as the fluoroquinolone ciprofloxacin. Comparisons of transposon insertion abundance before and after antibiotic exposure identified hundreds of potential modifiers of susceptibility to these agents. Using single-gene deletions, we validated several candidate modifiers of cefoxitin susceptibility and chose ydgH, a gene of unknown function, for further characterization. In addition to cefoxitin, deletion of ydgH in S. marcescens resulted in decreased susceptibility to multiple third-generation cephalosporins and, in contrast, to increased susceptibility to both cationic and anionic detergents. YdgH is highly conserved throughout the Enterobacterales, and we observed similar phenotypes in Escherichia coli O157:H7 and Enterobacter cloacae mutants. YdgH is predicted to localize to the periplasm, and we speculate that it may be involved there in cell envelope homeostasis. Collectively, our findings provide insight into chromosomal mediators of antibiotic resistance in S. marcescens and will serve as a resource for further investigations of this important pathogen.


Assuntos
Antibacterianos , Serratia marcescens , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Detergentes/farmacologia , Farmacorresistência Bacteriana , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/genética
2.
PLoS Pathog ; 17(2): e1009290, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33529199

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) is a food-borne pathogen that causes diarrheal disease and the potentially lethal hemolytic uremic syndrome. We used an infant rabbit model of EHEC infection that recapitulates many aspects of human intestinal disease to comprehensively assess colonic transcriptional responses to this pathogen. Cellular compartment-specific RNA-sequencing of intestinal tissue from animals infected with EHEC strains containing or lacking Shiga toxins (Stx) revealed that EHEC infection elicits a robust response that is dramatically shaped by Stx, particularly in epithelial cells. Many of the differences in the transcriptional responses elicited by these strains were in genes involved in immune signaling pathways, such as IL23A, and coagulation, including F3, the gene encoding Tissue Factor. RNA FISH confirmed that these elevated transcripts were found almost exclusively in epithelial cells. Collectively, these findings suggest that Stx potently remodels the host innate immune response to EHEC.


Assuntos
Colo/metabolismo , Escherichia coli Êntero-Hemorrágica/fisiologia , Infecções por Escherichia coli/microbiologia , Regulação da Expressão Gênica , Mucosa Intestinal/metabolismo , Toxina Shiga/farmacologia , Transcriptoma/efeitos dos fármacos , Animais , Apoptose , Colo/efeitos dos fármacos , Colo/patologia , Hemorragia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Coelhos
3.
Elife ; 102021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33588990

RESUMO

Adaptation to shifting temperatures is crucial for the survival of the bacterial pathogen Vibrio cholerae. Here, we show that colony rugosity, a biofilm-associated phenotype, is regulated by temperature in V. cholerae strains that naturally lack the master biofilm transcriptional regulator HapR. Using transposon-insertion mutagenesis, we found the V. cholerae ortholog of BipA, a conserved ribosome-associated GTPase, is critical for this temperature-dependent phenomenon. Proteomic analyses revealed that loss of BipA alters the synthesis of >300 proteins in V. cholerae at 22°C, increasing the production of biofilm-related proteins including the key transcriptional activators VpsR and VpsT, as well as proteins important for diverse cellular processes. At low temperatures, BipA protein levels increase and are required for optimal ribosome assembly in V. cholerae, suggesting that control of BipA abundance is a mechanism by which bacteria can remodel their proteomes. Our study reveals a remarkable new facet of V. cholerae's complex biofilm regulatory network.


Assuntos
Proteínas de Bactérias/genética , Biofilmes , GTP Fosfo-Hidrolases/genética , Vibrio cholerae/fisiologia , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , GTP Fosfo-Hidrolases/metabolismo , Fenótipo , Temperatura , Vibrio cholerae/genética
4.
J Bacteriol ; 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33361192

RESUMO

The function of cvpA, a bacterial gene predicted to encode an inner membrane protein, is largely unknown. Early studies in E. coli linked cvpA to Colicin V secretion and recent work revealed that it is required for robust intestinal colonization by diverse enteric pathogens. In enterohemorrhagic E. coli (EHEC), cvpA is required for resistance to the bile salt deoxycholate (DOC). Here, we carried out genome-scale transposon-insertion mutagenesis and spontaneous suppressor analysis to uncover cvpA's genetic interactions and identify common pathways that rescue the sensitivity of a ΔcvpA EHEC mutant to DOC. These screens demonstrated that mutations predicted to activate the σE-mediated extracytoplasmic stress response bypass the ΔcvpA mutant's susceptibility to DOC. Consistent with this idea, we found that deletions in rseA and msbB and direct overexpression of rpoE restored DOC resistance to the ΔcvpA mutant. Analysis of the distribution of CvpA homologs revealed that this inner membrane protein is conserved across diverse bacterial phyla, in both enteric and non-enteric bacteria that are not exposed to bile. Together, our findings suggest that CvpA plays a role in cell envelope homeostasis in response to DOC and similar stress stimuli in diverse bacterial species.IMPORTANCE Several enteric pathogens, including Enterohemorrhagic E. coli (EHEC), require CvpA to robustly colonize the intestine. This inner membrane protein is also important for secretion of a colicin and EHEC resistance to the bile salt deoxycholate (DOC), but its function is unknown. Genetic analyses carried out here showed that activation of the σE-mediated extracytoplasmic stress response restored the resistance of a cvpA mutant to DOC, suggesting that CvpA plays a role in cell envelope homeostasis. The conservation of CvpA across diverse bacterial phyla suggests that this membrane protein facilitates cell envelope homeostasis in response to varied cell envelope perturbations.

5.
mBio ; 11(1)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964739

RESUMO

Shigella species cause diarrheal disease globally. Shigellosis is typically characterized by bloody stools and colitis with mucosal damage and is the leading bacterial cause of diarrheal death worldwide. After the pathogen is orally ingested, it invades and replicates within the colonic epithelium through mechanisms that rely on its type III secretion system (T3SS). Currently, oral infection-based small animal models to study the pathogenesis of shigellosis are lacking. Here, we found that orogastric inoculation of infant rabbits with Shigella flexneri resulted in diarrhea and colonic pathology resembling that found in human shigellosis. Fasting animals prior to S. flexneri inoculation increased the frequency of disease. The pathogen colonized the colon, where both luminal and intraepithelial foci were observed. The intraepithelial foci likely arise through S. flexneri spreading from cell to cell. Robust S. flexneri intestinal colonization, invasion of the colonic epithelium, and epithelial sloughing all required the T3SS as well as IcsA, a factor required for bacterial spreading and adhesion in vitro Expression of the proinflammatory chemokine interleukin 8 (IL-8), detected with in situ mRNA labeling, was higher in animals infected with wild-type S. flexneri versus mutant strains deficient in icsA or T3SS, suggesting that epithelial invasion promotes expression of this chemokine. Collectively, our findings suggest that oral infection of infant rabbits offers a useful experimental model for studies of the pathogenesis of shigellosis and for testing of new therapeutics.IMPORTANCEShigella species are the leading bacterial cause of diarrheal death globally. The pathogen causes bacillary dysentery, a bloody diarrheal disease characterized by damage to the colonic mucosa and is usually spread through the fecal-oral route. Small animal models of shigellosis that rely on the oral route of infection are lacking. Here, we found that orogastric inoculation of infant rabbits with S. flexneri led to a diarrheal disease and colonic pathology reminiscent of human shigellosis. Diarrhea, intestinal colonization, and pathology in this model were dependent on the S. flexneri type III secretion system and IcsA, canonical Shigella virulence factors. Thus, oral infection of infant rabbits offers a feasible model to study the pathogenesis of shigellosis and to develop and test new therapeutics.


Assuntos
Infecções por Enterobacteriaceae/microbiologia , Interações Hospedeiro-Patógeno , Shigella/fisiologia , Animais , Biópsia , Diarreia/microbiologia , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/patologia , Infecções por Enterobacteriaceae/transmissão , Imuno-Histoquímica , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Coelhos
6.
PLoS Pathog ; 15(8): e1007652, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31404118

RESUMO

Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is an important food-borne pathogen that colonizes the colon. Transposon-insertion sequencing (TIS) was used to identify genes required for EHEC and E. coli K-12 growth in vitro and for EHEC growth in vivo in the infant rabbit colon. Surprisingly, many conserved loci contribute to EHEC's but not to K-12's growth in vitro. There was a restrictive bottleneck for EHEC colonization of the rabbit colon, which complicated identification of EHEC genes facilitating growth in vivo. Both a refined version of an existing analytic framework as well as PCA-based analysis were used to compensate for the effects of the infection bottleneck. These analyses confirmed that the EHEC LEE-encoded type III secretion apparatus is required for growth in vivo and revealed that only a few effectors are critical for in vivo fitness. Over 200 mutants not previously associated with EHEC survival/growth in vivo also appeared attenuated in vivo, and a subset of these putative in vivo fitness factors were validated. Some were found to contribute to efficient type-three secretion while others, including tatABC, oxyR, envC, acrAB, and cvpA, promote EHEC resistance to host-derived stresses. cvpA is also required for intestinal growth of several other enteric pathogens, and proved to be required for EHEC, Vibrio cholerae and Vibrio parahaemolyticus resistance to the bile salt deoxycholate, highlighting the important role of this previously uncharacterized protein in pathogen survival. Collectively, our findings provide a comprehensive framework for understanding EHEC growth in the intestine.


Assuntos
Elementos de DNA Transponíveis , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/crescimento & desenvolvimento , Proteínas de Escherichia coli/metabolismo , Intestinos/microbiologia , Fatores de Virulência/metabolismo , Animais , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/metabolismo , Escherichia coli O157/genética , Escherichia coli O157/isolamento & purificação , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Coelhos , Análise de Sequência de DNA , Fatores de Virulência/genética
7.
Appl Environ Microbiol ; 85(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31201277

RESUMO

Despite the advent of new techniques for genetic engineering of bacteria, allelic exchange through homologous recombination remains an important tool for genetic analysis. Currently, sacB-based vector systems are often used for allelic exchange, but counterselection escape, which prevents isolation of cells with the desired mutation, occasionally limits their utility. To circumvent this, we engineered a series of "pTOX" allelic-exchange vectors. Each plasmid encodes one of a set of inducible toxins, chosen for their potential utility in a wide range of medically important proteobacteria. A codon-optimized rhaS transcriptional activator with a strong synthetic ribosome-binding site enables tight toxin induction even in organisms lacking an endogenous rhamnose regulon. Expression of the gene encoding blue AmilCP or magenta TsPurple nonfluorescent chromoprotein facilitates monitoring of successful single- and double-crossover events using these vectors. The versatility of these vectors was demonstrated by deleting genes in Serratia marcescens, Escherichia coli O157:H7, Enterobacter cloacae, and Shigella flexneri Finally, pTOX was used to characterize the impact of disruption of all combinations of the 3 paralogous S. marcescens peptidoglycan amidohydrolases on chromosomal ampC ß-lactamase activity and the corresponding ß-lactam antibiotic resistance. Mutation of multiple amidohydrolases was necessary for high-level ampC derepression and ß-lactam resistance. These data suggest why ß-lactam resistance may emerge during treatment less frequently in S. marcescens than in other AmpC-producing pathogens, like E. cloacae Collectively, our findings suggest that the pTOX vectors should be broadly useful for genetic engineering of Gram-negative bacteria.IMPORTANCE Targeted modification of bacterial genomes is critical for genetic analysis of microorganisms. Allelic exchange is a technique that relies on homologous recombination to replace native loci with engineered sequences. However, current allelic-exchange vectors often enable only weak selection for successful homologous recombination. We developed a suite of new allelic-exchange vectors, pTOX, which were validated in several medically important proteobacteria. They encode visible nonfluorescent chromoproteins that enable easy identification of colonies bearing integrated vectors and permit stringent selection for the second step of homologous recombination. We demonstrate the utility of these vectors by using them to investigate the effect of inactivation of Serratia marcescens peptidoglycan amidohydrolases on ß-lactam antibiotic resistance.


Assuntos
Vetores Genéticos/genética , Genoma Bacteriano , Proteobactérias/genética , Alelos , Antibacterianos/farmacologia , Vetores Genéticos/metabolismo , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Plasmídeos/metabolismo , Proteobactérias/efeitos dos fármacos , Proteobactérias/metabolismo , beta-Lactamas/farmacologia
8.
Mol Microbiol ; 111(2): 405-422, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30422330

RESUMO

In Escherichia coli, after DNA damage, the SOS response increases the transcription (and protein levels) of approximately 50 genes. As DNA repair ensues, the level of transcription returns to homeostatic levels. ClpXP and other proteases return the high levels of several SOS proteins to homeostasis. When all SOS genes are constitutively expressed and many SOS proteins are stabilized by the removal of ClpXP, microscopic analysis shows that cells filament, produce mini-cells and have branching protrusions along their length. The only SOS gene required (of 19 tested) for the cell length phenotype is recN. RecN is a member of the Structural Maintenance of Chromosome (SMC) class of proteins. It can hold pieces of DNA together and is important for double-strand break repair (DSBR). RecN is degraded by ClpXP. Overexpression of recN+ in the absence of ClpXP or recN4174 (A552S, A553V), a mutant not recognized by ClpXP, produce filamentous cells with nucleoid partitioning defects. It is hypothesized that when produced at high levels during the SOS response, RecN interferes with nucleoid partitioning and Z-Ring function by holding together sections of the nucleoid, or sister nucleoids, providing another way to inhibit cell division.


Assuntos
Proteínas de Bactérias/metabolismo , Divisão Celular , Enzimas de Restrição do DNA/metabolismo , Escherichia coli/citologia , Escherichia coli/fisiologia , Peptídeo Hidrolases/deficiência , Resposta SOS em Genética , Microscopia , Fenótipo
9.
Sci Transl Med ; 10(445)2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899024

RESUMO

Outbreaks of cholera, a rapidly fatal diarrheal disease, often spread explosively. The efficacy of reactive vaccination campaigns-deploying Vibrio cholerae vaccines during epidemics-is partially limited by the time required for vaccine recipients to develop adaptive immunity. We created HaitiV, a live attenuated cholera vaccine candidate, by deleting diarrheagenic factors from a recent clinical isolate of V. cholerae and incorporating safeguards against vaccine reversion. We demonstrate that administration of HaitiV 24 hours before lethal challenge with wild-type V. cholerae reduced intestinal colonization by the wild-type strain, slowed disease progression, and reduced mortality in an infant rabbit model of cholera. HaitiV-mediated protection required viable vaccine, and rapid protection kinetics are not consistent with development of adaptive immunity. These features suggest that HaitiV mediates probiotic-like protection from cholera, a mechanism that is not known to be elicited by traditional vaccines. Mathematical modeling indicates that an intervention that works at the speed of HaitiV-mediated protection could improve the public health impact of reactive vaccination.


Assuntos
Cólera/prevenção & controle , Vacinas Atenuadas/uso terapêutico , Imunidade Adaptativa/fisiologia , Animais , Cólera/imunologia , Progressão da Doença , Cinética , Modelos Teóricos , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA