Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nat Commun ; 15(1): 6726, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112502

RESUMO

Arteriviruses infect a variety of mammalian hosts, but the receptors used by these viruses to enter cells are poorly understood. We identified the neonatal Fc receptor (FcRn) as an important pro-viral host factor via comparative genome-wide CRISPR-knockout screens with multiple arteriviruses. Using a panel of cell lines and divergent arteriviruses, we demonstrate that FcRn is required for the entry step of arterivirus infection and serves as a molecular barrier to arterivirus cross-species infection. We also show that FcRn synergizes with another known arterivirus entry factor, CD163, to mediate arterivirus entry. Overexpression of FcRn and CD163 sensitizes non-permissive cells to infection and enables the culture of fastidious arteriviruses. Treatment of multiple cell lines with a pre-clinical anti-FcRn monoclonal antibody blocked infection and rescued cells from arterivirus-induced death. Altogether, this study identifies FcRn as a novel pan-arterivirus receptor, with implications for arterivirus emergence, cross-species infection, and host-directed pan-arterivirus countermeasure development.


Assuntos
Antígenos de Histocompatibilidade Classe I , Receptores Fc , Receptores Virais , Receptores Fc/metabolismo , Receptores Fc/genética , Humanos , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Animais , Receptores Virais/metabolismo , Receptores Virais/genética , Linhagem Celular , Internalização do Vírus , Antígenos CD/metabolismo , Antígenos CD/genética , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Células HEK293
2.
Emerg Infect Dis ; 30(4): 721-731, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526136

RESUMO

Genetically diverse simian arteriviruses (simarteriviruses) naturally infect geographically and phylogenetically diverse monkeys, and cross-species transmission and emergence are of considerable concern. Characterization of most simarteriviruses beyond sequence analysis has not been possible because the viruses fail to propagate in the laboratory. We attempted to isolate 4 simarteriviruses, Kibale red colobus virus 1, Pebjah virus, simian hemorrhagic fever virus, and Southwest baboon virus 1, by inoculating an immortalized grivet cell line (known to replicate simian hemorrhagic fever virus), primary macaque cells, macrophages derived from macaque induced pluripotent stem cells, and mice engrafted with macaque CD34+-enriched hematopoietic stem cells. The combined effort resulted in successful virus isolation; however, no single approach was successful for all 4 simarteriviruses. We describe several approaches that might be used to isolate additional simarteriviruses for phenotypic characterization. Our results will expedite laboratory studies of simarteriviruses to elucidate virus-host interactions, assess zoonotic risk, and develop medical countermeasures.


Assuntos
Arterivirus , Animais , Camundongos , Arterivirus/genética , Macaca , Macrófagos , Linhagem Celular
3.
J Virol ; 98(3): e0156323, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38323811

RESUMO

Macrophages are important target cells for diverse viruses and thus represent a valuable system for studying virus biology. Isolation of primary human macrophages is done by culture of dissociated tissues or from differentiated blood monocytes, but these methods are both time consuming and result in low numbers of recovered macrophages. Here, we explore whether macrophages derived from human induced pluripotent stem cells (iPSCs)-which proliferate indefinitely and potentially provide unlimited starting material-could serve as a faithful model system for studying virus biology. Human iPSC-derived monocytes were differentiated into macrophages and then infected with HIV-1, dengue virus, or influenza virus as model human viruses. We show that iPSC-derived macrophages support the replication of these viruses with kinetics and phenotypes similar to human blood monocyte-derived macrophages. These iPSC-derived macrophages were virtually indistinguishable from human blood monocyte-derived macrophages based on surface marker expression (flow cytometry), transcriptomics (RNA sequencing), and chromatin accessibility profiling. iPSC lines were additionally generated from non-human primate (chimpanzee) fibroblasts. When challenged with dengue virus, human and chimpanzee iPSC-derived macrophages show differential susceptibility to infection, thus providing a valuable resource for studying the species-tropism of viruses. We also show that blood- and iPSC-derived macrophages both restrict influenza virus at a late stage of the virus lifecycle. Collectively, our results substantiate iPSC-derived macrophages as an alternative to blood monocyte-derived macrophages for the study of virus biology. IMPORTANCE: Macrophages have complex relationships with viruses: while macrophages aid in the removal of pathogenic viruses from the body, macrophages are also manipulated by some viruses to serve as vessels for viral replication, dissemination, and long-term persistence. Here, we show that iPSC-derived macrophages are an excellent model that can be exploited in virology.


Assuntos
Vírus da Dengue , HIV-1 , Células-Tronco Pluripotentes Induzidas , Macrófagos , Modelos Biológicos , Orthomyxoviridae , Virologia , Animais , Humanos , Diferenciação Celular/genética , HIV-1/crescimento & desenvolvimento , HIV-1/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/virologia , Orthomyxoviridae/crescimento & desenvolvimento , Orthomyxoviridae/fisiologia , Pan troglodytes , Vírus da Dengue/crescimento & desenvolvimento , Vírus da Dengue/fisiologia , Fibroblastos/citologia , Monócitos/citologia , Replicação Viral , Citometria de Fluxo , Perfilação da Expressão Gênica , Montagem e Desmontagem da Cromatina , Tropismo Viral , Virologia/métodos , Biomarcadores/análise , Biomarcadores/metabolismo
4.
bioRxiv ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38014262

RESUMO

Simian immunodeficiency viruses (SIVs) comprise a large group of primate lentiviruses that endemically infect African monkeys. HIV-1 spilled over to humans from this viral reservoir, but the spillover did not occur directly from monkeys to humans. Instead, a key event was the introduction of SIVs into great apes, which then set the stage for infection of humans. Here, we investigate the role of the lentiviral entry receptor, CD4, in this key and fateful event in the history of SIV/HIV emergence. First, we reconstructed and tested ancient forms of CD4 at two important nodes in ape speciation, both prior to the infection of chimpanzees and gorillas with these viruses. These ancestral CD4s fully supported entry of diverse SIV isolates related to the viruses that made this initial jump to apes. In stark contrast, modern chimpanzee and gorilla CD4 orthologs are more resistant to these viruses. To investigate how this resistance in CD4 was gained, we acquired CD4 gene sequences from 32 gorilla individuals of two species, and identified alleles that encode 8 unique CD4 protein variants. Functional testing of these identified variant-specific differences in susceptibility to virus entry. By engineering single point mutations from resistant gorilla CD4 variants into the permissive human CD4 receptor, we demonstrate that acquired substitutions in gorilla CD4 did convey resistance to virus entry. We provide a population genetic analysis to support the theory that selection is acting in favor of more and more resistant CD4 alleles in ape species harboring SIV endemically (gorillas and chimpanzees), but not in other ape species that lack SIV infections (bonobos and orangutans). Taken together, our results show that SIV has placed intense selective pressure on ape CD4, acting to propagate SIV-resistant alleles in chimpanzee and gorilla populations.

5.
J Virol ; 97(10): e0093023, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37792000

RESUMO

IMPORTANCE: Mouse models of viral infection play an especially large role in virology. In 1960, a mouse virus, lactate dehydrogenase-elevating virus (LDV), was discovered and found to have the peculiar ability to evade clearance by the immune system, enabling it to persistently infect an individual mouse for its entire lifespan without causing overt disease. However, researchers were unable to grow LDV in culture, ultimately resulting in the demise of this system as a model of failed immunity. We solve this problem by identifying the cell-surface molecule CD163 as the critical missing component in cell-culture systems, enabling the growth of LDV in immortalized cell lines for the first time. This advance creates abundant opportunities for further characterizing LDV in order to study both failed immunity and the family of viruses to which LDV belongs, Arteriviridae (aka, arteriviruses).


Assuntos
Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Técnicas de Cultura de Células , Expressão Ectópica do Gene , Vírus Elevador do Lactato Desidrogenase , Receptores de Superfície Celular , Animais , Camundongos , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Linhagem Celular/virologia , Vírus Elevador do Lactato Desidrogenase/genética , Vírus Elevador do Lactato Desidrogenase/crescimento & desenvolvimento , Vírus Elevador do Lactato Desidrogenase/imunologia , Vírus Elevador do Lactato Desidrogenase/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Fatores de Tempo
6.
bioRxiv ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37745311

RESUMO

Innate immune signaling is essential for clearing pathogens and damaged cells, and must be tightly regulated to avoid excessive inflammation or autoimmunity. Here, we found that the alternative splicing of exons derived from transposable elements is a key mechanism controlling immune signaling in human cells. By analyzing long-read transcriptome datasets, we identified numerous transposon exonization events predicted to generate functional protein variants of immune genes, including the type I interferon receptor IFNAR2. We demonstrated that the transposon-derived isoform of IFNAR2 is more highly expressed than the canonical isoform in almost all tissues, and functions as a decoy receptor that potently inhibits interferon signaling including in cells infected with SARS-CoV-2. Our findings uncover a primate-specific axis controlling interferon signaling and show how a transposon exonization event can be co-opted for immune regulation.

7.
STAR Protoc ; 4(2): 102291, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37209094

RESUMO

We present a protocol to detect cells that have been infected by RNA viruses. The method, RNA fluorescence in situ hybridization flow cytometry (RNA FISH-Flow), uses 48 fluorescently labeled DNA probes that hybridize in tandem to viral RNA. RNA FISH-Flow probes can be synthesized to match any RNA virus genome, in either sense or anti-sense, enabling detection of genomes or replication intermediates within cells. Flow cytometry enables high-throughput analysis of infection dynamics within a population at the single cell level. For complete details on the use and execution of this protocol, please refer to Warren et al. (2022).1.

8.
Science ; 379(6636): 982-983, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36893227

RESUMO

Experimental virology can inform strategic monitoring for new viruses in humans.


Assuntos
Monitoramento Epidemiológico , Zoonoses Virais , Vírus , Animais , Humanos , Virologia , Vírus/genética , Vírus/isolamento & purificação , Zoonoses Virais/transmissão , Zoonoses Virais/virologia
9.
Cell ; 185(21): 3980-3991.e18, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36182704

RESUMO

Simian arteriviruses are endemic in some African primates and can cause fatal hemorrhagic fevers when they cross into primate hosts of new species. We find that CD163 acts as an intracellular receptor for simian hemorrhagic fever virus (SHFV; a simian arterivirus), a rare mode of virus entry that is shared with other hemorrhagic fever-causing viruses (e.g., Ebola and Lassa viruses). Further, SHFV enters and replicates in human monocytes, indicating full functionality of all of the human cellular proteins required for viral replication. Thus, simian arteriviruses in nature may not require major adaptations to the human host. Given that at least three distinct simian arteriviruses have caused fatal infections in captive macaques after host-switching, and that humans are immunologically naive to this family of viruses, development of serology tests for human surveillance should be a priority.


Assuntos
Arterivirus , Febres Hemorrágicas Virais , Animais , Arterivirus/fisiologia , Febres Hemorrágicas Virais/veterinária , Febres Hemorrágicas Virais/virologia , Humanos , Macaca , Primatas , Zoonoses Virais , Internalização do Vírus , Replicação Viral
10.
Annu Rev Virol ; 9(1): 375-395, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35671565

RESUMO

Human papillomavirus (HPV) infection is a causative agent of multiple human cancers, including cervical and head and neck cancers. In these HPV-positive tumors, somatic mutations are caused by aberrant activation of DNA mutators such as members of the apolipoprotein B messenger RNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) family of cytidine deaminases. APOBEC3 proteins are most notable for their restriction of various viruses, including anti-HPV activity. However, the potential role of APOBEC3 proteins in HPV-induced cancer progression has recently garnered significant attention. Ongoing research stems from the observations that elevated APOBEC3 expression is driven by HPV oncogene expression and that APOBEC3 activity is likely a significant contributor to somatic mutagenesis in HPV-positive cancers. This review focuses on recent advances in the study of APOBEC3 proteins and their roles in HPV infection and HPV-driven oncogenesis. Further, we discuss critical gaps and unanswered questions in our understanding of APOBEC3 in virus-associated cancers.


Assuntos
Neoplasias , Infecções por Papillomavirus , Desaminases APOBEC/genética , Apolipoproteínas , Carcinogênese/genética , Citidina , Humanos , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Peptídeos , Proteínas/genética , RNA Mensageiro
11.
PLoS Biol ; 17(6): e3000304, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31181085

RESUMO

Individuals chronically infected with HIV-1 harbor complex viral populations within their bloodstreams. Recently, it has come to light that when these people infect others, the new infection is typically established by only one or a small number of virions from within this complex viral swarm. An important goal is to characterize the biological properties of HIV-1 virions that seed and exist early in new human infections because these are potentially the only viruses against which a prophylactic HIV-1 vaccine would need to elicit protection. This includes understanding how the Envelope (Env) protein of these virions interacts with the T-cell receptor CD4, which supports attachment and entry of HIV-1 into target cells. We examined early HIV-1 isolates for their ability to infect cells via the CD4 receptor of 15 different primate species. Primates were the original source of HIV-1 and now serve as valuable animal models for studying HIV-1. We find that most primary isolates of HIV-1 from the blood, including early isolates, are highly selective and enter cells through some primate CD4 receptor orthologs but not others. This phenotype is remarkably consistent, regardless of route of transmission, viral subtype, or time of isolation post infection. We show that the weak CD4 binding affinity of blood-derived HIV-1 isolates is what makes them sensitive to the small sequence differences in CD4 from one primate species to the next. To substantiate this, we engineered an early HIV-1 Env to have high, medium, or low binding affinity to CD4, and we show that it loses the ability to enter cells via the CD4 receptor of many primate species as the binding affinity gets weaker. Based on the phenotype of selective use of primate CD4, we find that weak CD4 binding appears to be a nearly universal property of HIV-1 circulating in the bloodstream. Therefore, weak binding to CD4 must be a selected and important property in the biology of HIV-1 in the body. We identify six primate species that encode CD4 receptors that fully support the entry of early HIV-1 isolates despite their low binding affinity for CD4. These findings will help inform long-standing efforts to model HIV-1 transmission and early disease in primates.


Assuntos
Antígenos CD4/imunologia , Infecções por HIV/imunologia , HIV-1/genética , Animais , Aotidae , Antígenos CD4/genética , Linhagem Celular , Modelos Animais de Doenças , Células HEK293 , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/genética , Soropositividade para HIV/genética , Soropositividade para HIV/imunologia , HIV-1/imunologia , Humanos , Macaca mulatta , Primatas/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
12.
Proc Natl Acad Sci U S A ; 116(23): 11460-11469, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31113887

RESUMO

Pandemic HIV-1 (group M) emerged following the cross-species transmission of a simian immunodeficiency virus from chimpanzees (SIVcpz) to humans. Primate lentiviruses (HIV/SIV) require the T cell receptor CD4 to enter into target cells. By surveying the sequence and function of CD4 in 50 chimpanzee individuals, we find that all chimpanzee CD4 alleles encode a fixed, chimpanzee-specific substitution (34T) that creates a glycosylation site on the virus binding surface of the CD4 receptor. Additionally, a single nucleotide polymorphism (SNP) has arisen in chimpanzee CD4 (68T) that creates a second glycosylation site on the same virus-binding interface. This substitution is not yet fixed, but instead alleles containing this SNP are still circulating within chimpanzee populations. Thus, all allelic versions of chimpanzee CD4 are singly glycosylated at the virus binding surface, and some allelic versions are doubly glycosylated. Doubly glycosylated forms of chimpanzee CD4 reduce HIV-1 and SIVcpz infection by as much as two orders of magnitude. Full restoration of virus infection in cells bearing chimpanzee CD4 requires reversion of both threonines at sites 34 and 68, destroying both of the glycosylation sites, suggesting that the effects of the glycans are additive. Differentially glycosylated CD4 receptors were biochemically purified and used in neutralization assays and microscale thermophoresis to show that the glycans on chimpanzee CD4 reduce binding affinity with the lentiviral surface glycoprotein, Env. These glycans create a shield that protects CD4 from being engaged by viruses, demonstrating a powerful form of host resistance against deadly primate lentiviruses.


Assuntos
Antígenos CD4/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Pan troglodytes/imunologia , Pan troglodytes/virologia , Polissacarídeos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Linhagem Celular , Glicosilação , Células HEK293 , Infecções por HIV/virologia , Humanos , Polimorfismo de Nucleotídeo Único/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia
13.
PLoS Biol ; 17(4): e3000217, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31002666

RESUMO

Viruses of wild and domestic animals can infect humans in a process called zoonosis, and these events can give rise to explosive epidemics such as those caused by the HIV and Ebola viruses. While humans are constantly exposed to animal viruses, those that can successfully infect and transmit between humans are exceedingly rare. The key event in zoonosis is when an animal virus begins to replicate (one virion making many) in the first human subject. Only at this point will the animal virus first experience the selective environment of the human body, rendering possible viral adaptation and refinement for humans. In addition, appreciable viral titers in this first human may enable infection of a second, thus initiating selection for viral variants with increased capacity for spread. We assert that host genetics plays a critical role in defining which animal viruses in nature will achieve this key event of replication in a first human host. This is because animal viruses that pose the greatest risk to humans will have few (or no) genetic barriers to replicating themselves in human cells, thus requiring minimal mutations to make this jump. Only experimental virology provides a path to identifying animal viruses with the potential to replicate themselves in humans because this information will not be evident from viral sequencing data alone.


Assuntos
Interações entre Hospedeiro e Microrganismos/genética , Replicação Viral/genética , Zoonoses/genética , Animais , Epidemias/prevenção & controle , Infecções por HIV/genética , Infecções por HIV/metabolismo , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/metabolismo , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Mutação , Receptores Virais/genética , Zoonoses/virologia
14.
PLoS Pathog ; 14(4): e1006983, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29614111

RESUMO

[This corrects the article DOI: 10.1371/journal.ppat.1006906.].

15.
PLoS Pathog ; 14(3): e1006906, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29518153

RESUMO

HIV-1 arose as the result of spillover of simian immunodeficiency viruses (SIVs) from great apes in Africa, namely from chimpanzees and gorillas. Chimpanzees and gorillas were, themselves, infected with SIV after virus spillover from African monkeys. During spillover events, SIV is thought to require adaptation to the new host species. The host barriers that drive viral adaptation have predominantly been attributed to restriction factors, rather than cofactors (host proteins exploited to promote viral replication). Here, we consider the role of one cofactor, RanBP2, in providing a barrier that drove viral genome evolution during SIV spillover events. RanBP2 (also known as Nup358) is a component of the nuclear pore complex known to facilitate nuclear entry of HIV-1. Our data suggest that transmission of SIV from monkeys to chimpanzees, and then from chimpanzees to gorillas, both coincided with changes in the viral capsid that allowed interaction with RanBP2 of the new host species. However, human RanBP2 subsequently provided no barrier to the zoonotic transmission of SIV from chimpanzees or gorillas, indicating that chimpanzee- and gorilla-adapted SIVs are pre-adapted to humans in this regard. Our observations are in agreement with RanBP2 driving virus evolution during cross-species transmissions of SIV, particularly in the transmissions to and between great ape species.


Assuntos
Evolução Biológica , Infecções por HIV/virologia , Chaperonas Moleculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Zoonoses/virologia , África , Sequência de Aminoácidos , Animais , Infecções por HIV/metabolismo , Infecções por HIV/transmissão , HIV-1/patogenicidade , Especificidade de Hospedeiro , Humanos , Chaperonas Moleculares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Filogenia , Primatas , Homologia de Sequência , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Vírus da Imunodeficiência Símia/patogenicidade , Especificidade da Espécie , Replicação Viral , Zoonoses/metabolismo , Zoonoses/transmissão
16.
J Virol ; 92(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29367246

RESUMO

APOBEC3 (A3) mutation signatures have been observed in a variety of human cancer genomes, including those of cervical and head and neck cancers caused by human papillomavirus (HPV) infection. However, the driving forces that promote off-target A3 activity remain mostly unclear. Here, we report a mechanism for the dramatic increase of A3A protein levels in HPV-positive keratinocytes. We show that expression of the viral protein E7 from high-risk HPVs, but not E7 from low-risk HPVs, significantly prolongs the cellular half-life of A3A protein in human keratinocytes and HPV-positive cancer cell lines. We have mapped several residues within the cullin 2 (CUL2) binding motif of HPV16 E7 as being important for mediating A3A protein stabilization. Furthermore, we provide direct evidence that both A3A and HPV16 E7 interact with CUL2, suggesting that the E7-CUL2 complex formed during HPV infection may regulate A3A protein levels in the cell. Using an in vitro cytidine deaminase assay, we show that E7-stabilized A3A remains catalytically active. Taken together, our findings suggest that the HPV oncoprotein E7 dysregulates endogenous A3A protein levels and thus provides novel mechanistic insight into cellular triggers of A3 mutations in HPV-positive cancers.IMPORTANCE Human papillomavirus (HPV) is causally associated with over 5% of all human malignancies. Several recent studies have shown that a subset of cancers, including HPV-positive head and neck and cervical cancers, have distinct mutational signatures potentially caused by members of the APOBEC3 cytidine deaminase family. However, the mechanism that induces APOBEC3 activity in cancer cells is poorly understood. Here, we report that the HPV oncoprotein E7 stabilizes the APOBEC3A (A3A) protein in human keratinocytes by inhibiting ubiquitin-dependent protein degradation in a cullin-dependent manner. Interestingly, the HPV E7-stabilized A3A protein maintains its deaminase activity. These findings provide a new insight into cancer mutagenesis enhanced by virus-induced A3A protein stabilization.


Assuntos
Proteínas Culina/metabolismo , Citidina Desaminase/metabolismo , Papillomavirus Humano 16/metabolismo , Queratinócitos/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/metabolismo , Proteínas/metabolismo , Proteólise , Linhagem Celular Transformada , Proteínas Culina/genética , Citidina Desaminase/genética , Estabilidade Enzimática/genética , Papillomavirus Humano 16/genética , Humanos , Queratinócitos/patologia , Queratinócitos/virologia , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Proteínas/genética
17.
Viruses ; 9(8)2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28825669

RESUMO

The apolipoprotein B messenger RNA-editing, enzyme-catalytic, polypeptide-like 3 (APOBEC3) family of cytidine deaminases plays an important role in the innate immune response to viral infections by editing viral genomes. However, the cytidine deaminase activity of APOBEC3 enzymes also induces somatic mutations in host genomes, which may drive cancer progression. Recent studies of human papillomavirus (HPV) infection and disease outcome highlight this duality. HPV infection is potently inhibited by one family member, APOBEC3A. Expression of APOBEC3A and APOBEC3B is highly elevated by the HPV oncoproteins E6 and E7 during persistent virus infection and disease progression. Furthermore, there is a high prevalence of APOBEC3A and APOBEC3B mutation signatures in HPV-associated cancers. These findings suggest that induction of an APOBEC3-mediated antiviral response during HPV infection may inadvertently contribute to cancer mutagenesis and virus evolution. Here, we discuss current understanding of APOBEC3A and APOBEC3B biology in HPV restriction, evolution, and associated cancer mutagenesis.


Assuntos
Carcinogênese/genética , Citidina Desaminase/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Mutagênese , Neoplasias/genética , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , Proteínas/metabolismo , Citidina Desaminase/genética , Progressão da Doença , Genoma Viral , Humanos , Imunidade Inata , Antígenos de Histocompatibilidade Menor/genética , Neoplasias/imunologia , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/imunologia , Proteínas/genética
18.
Sci Rep ; 7(1): 3633, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623356

RESUMO

Human papillomavirus (HPV) infection distinctly alters methylation patterns in HPV-associated cancer. We have recently reported that HPV E7-dependent promoter hypermethylation leads to downregulation of the chemokine CXCL14 and suppression of antitumor immune responses. To investigate the extent of gene expression dysregulated by HPV E7-induced DNA methylation, we analyzed parallel global gene expression and DNA methylation using normal immortalized keratinocyte lines, NIKS, NIKS-16, NIKS-18, and NIKS-16∆E7. We show that expression of the MHC class I genes is downregulated in HPV-positive keratinocytes in an E7-dependent manner. Methylome analysis revealed hypermethylation at a distal CpG island (CGI) near the HLA-E gene in NIKS-16 cells compared to either NIKS cells or NIKS-16∆E7 cells, which lack E7 expression. The HLA-E CGI functions as an active promoter element which is dramatically repressed by DNA methylation. HLA-E protein expression on cell surface is downregulated by high-risk HPV16 and HPV18 E7 expression, but not by low-risk HPV6 and HPV11 E7 expression. Conversely, demethylation at the HLA-E CGI restores HLA-E protein expression in HPV-positive keratinocytes. Because HLA-E plays an important role in antiviral immunity by regulating natural killer and CD8+ T cells, epigenetic downregulation of HLA-E by high-risk HPV E7 may contribute to virus-induced immune evasion during HPV persistence.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Queratinócitos/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Transcriptoma , Apresentação de Antígeno/genética , Transformação Celular Viral , Ilhas de CpG , Epigênese Genética , Perfilação da Expressão Gênica , Humanos , Queratinócitos/virologia , Modelos Biológicos , Regiões Promotoras Genéticas , Antígenos HLA-E
19.
Virus Res ; 231: 21-33, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-27890631

RESUMO

A majority of human papillomavirus (HPV) infections are asymptomatic and self-resolving in the absence of medical interventions. Various innate and adaptive immune responses, as well as physical barriers, have been implicated in controlling early HPV infections. However, if HPV overcomes these host immune defenses and establishes persistence in basal keratinocytes, it becomes very difficult for the host to eliminate the infection. The HPV oncoproteins E5, E6, and E7 are important in regulating host immune responses. These oncoproteins dysregulate gene expression, protein-protein interactions, posttranslational modifications, and cellular trafficking of critical host immune modulators. In addition to the HPV oncoproteins, sequence variation and dinucleotide depletion in papillomavirus genomes has been suggested as an alternative strategy for evasion of host immune defenses. Since anti-HPV host immune responses are also considered to be important for antitumor immunity, immune dysregulation by HPV during virus persistence may contribute to immune suppression essential for HPV-associated cancer progression. Here, we discuss cellular pathways dysregulated by HPV that allow the virus to evade various host immune defenses.


Assuntos
Genoma Viral , Evasão da Resposta Imune , Queratinócitos/imunologia , NF-kappa B/genética , Proteínas Oncogênicas Virais/genética , Papillomaviridae/genética , Infecções por Papillomavirus/virologia , Desaminases APOBEC , Imunidade Adaptativa , Citidina Desaminase , Citosina Desaminase/genética , Citosina Desaminase/imunologia , Metilação de DNA , Regulação da Expressão Gênica , Histonas/genética , Histonas/imunologia , Humanos , Imunidade Inata , Queratinócitos/virologia , NF-kappa B/imunologia , Proteínas Oncogênicas Virais/imunologia , Papillomaviridae/crescimento & desenvolvimento , Papillomaviridae/patogenicidade , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/patologia , Vírion/genética , Vírion/crescimento & desenvolvimento , Vírion/patogenicidade , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA