Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Crystallogr C Struct Chem ; 79(Pt 6): 217-226, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37140890

RESUMO

Two crystal structures of chalcones, or 1,3-diarylprop-2-en-1-ones, are presented; both contain a p-methyl substitution on the 3-Ring, but differ with respect to the m-substitution on the 1-Ring. Their systematic names are (2E)-3-(4-methylphenyl)-1-(3-{[(4-methylphenyl)methylidene]amino}phenyl)prop-2-en-1-one (C24H21NO) and N-{3-[(2E)-3-(4-methylphenyl)prop-2-enoyl]phenyl}acetamide (C18H17NO2), which are abbreviated as 3'-(N=CHC6H4-p-CH3)-4-methylchalcone and 3'-(NHCOCH3)-4-methylchalcone, respectively. Both chalcones represent the first reported acetamide-substituted and imino-substituted chalcone crystal structures, adding to the robust library of chalcone structures within the Cambridge Structural Database. The crystal structure of 3'-(N=CHC6H4-p-CH3)-4-methylchalcone exhibits close contacts between the enone O atom and the substituent arene ring, in addition to C...C interactions between the substituent arene rings. The structure of 3'-(NHCOCH3)-4-methylchalcone exhibits a unique interaction between the enone O atom and the 1-Ring substituent, contributing to its antiparallel crystal packing. In addition, both structures exhibit π-stacking, which occurs between the 1-Ring and R-Ring for 3'-(N=CHC6H4-p-CH3)-4-methylchalcone, and between the 1-Ring and 3-Ring for 3'-(NHCOCH3)-4-methylchalcone.

2.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 77(Pt 3): 347-356, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34096516

RESUMO

The structures of three iodochalcones, functionalized with fluorine or a nitro group, have been investigated to explore the impact of different molecular electrostatic distributions on the halogen bonding within each crystal structure. The strongly withdrawing nitro group presented a switch of the halogen bond from a lateral to a linear motif. Surprisingly, this appears to be influenced by a net positive shift in charge distribution around the lateral edges of the σ-hole, making the lateral I...I bonding motif less preferable. A channel of amphoteric I...I type II halogen bonds is observed for a chalcone molecule, which was not previously reported in chalcones, alongside an example of the common synthon involving extended linear chains of I...O2N donor-acceptor halogen bonds. This work shows that halogenated chalcones may be an interesting target for developing halogen bonding as a significant tool within crystal engineering, a thus far underexplored area for this common structural motif.

3.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 10): 1599-1604, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33117572

RESUMO

The structure of three functionalized chalcones (1,3-di-aryl-prop-2-en-1-ones), containing combinations of nitro and di-methyl-amino functional groups, are presented, namely, 1-[4-(di-methyl-amino)-phen-yl]-3-(3-nitro-phen-yl)prop-2-en-1-one, C17H16N2O3, Gp8m, 3-[3-(di-methyl-amino)-phen-yl]-1-(3-nitro-phen-yl)prop-2-en-1-one, C17H16N2O3, Hm7m and 1-(3-nitro-phen-yl)-3-phenyl-prop-2-en-1-one, C15H11NO3, Hm1-. Each of the mol-ecules contains bonding motifs seen in previously solved crystal structures of functionalized chalcones, adding to the large dataset available for these small organic mol-ecules. The structures of all three of the title compounds contain similar bonding motifs, resulting in two-dimensional planes of mol-ecules formed via C-H⋯O hydrogen-bonding inter-actions involving the nitro- and ketone groups. The structure of Hm1- is very similar to the crystal structure of a previously solved isomer [Jing (2009 ▸). Acta Cryst. E65, o2510].

4.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 9): 1496-1502, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32939307

RESUMO

Two crystal structures of chalcones, or 1,3-di-aryl-prop-2-en-1-ones, are presented; both contain a methyl substitution on the 3-Ring, but differ on the 1-Ring, bromo versus cyano. The compounds are 3'-bromo-4-methyl-chalcone [systematic name: 1-(2-bromo-phen-yl)-3-(4-methyl-phen-yl)prop-2-en-1-one], C16H13BrO, and 3'-cyano-4-methyl-chalcone {systematic name: 2-[3-(4-methyl-phen-yl)prop-2-eno-yl]benzo-nitrile}, C17H13NO. Both chalcones meaningfully add to the large dataset of chalcone structures. The crystal structure of 3'-cyano-4-methyl-chalcone exhibits close contacts with the cyano nitro-gen that do not appear in previously reported disubstituted cyano-chalcones, namely inter-actions between the cyano nitro-gen atom and a ring hydrogen atom as well as a methyl hydrogen atom. The structure of 3'-bromo-4-methyl-chalcone exhibits a type I halogen bond, similar to that found in a previously reported structure for 4-bromo-3'-methyl-chalcone.

5.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 1): 13-17, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32831235

RESUMO

Heterocyclic chalcones are a recently explored subgroup of chalcones that have sparked interest due to their significant antibacterial and antifungal capabilities. Herein, the structure and solubility of two such compounds, (E)-1-(1H-pyrrol-2-yl)-3-(thiophen-2-yl)prop-2-en-1-one and (E)-3-phenyl-1-(1H-pyrrol-2-yl)prop-2-en-1-one, are assessed. Single crystals of (E)-1-(1H-pyrrol-2-yl)-3-(thiophen-2-yl)prop-2-en-1-one were grown, allowing structural comparisons between the heterocyclic chalcones and (2E)-1,3-diphenylprop-2-en-1-one, trivially known as trans-chalcone. The two heterocyclic chalcones were found to be less soluble in all solvents tested and to have higher melting points than trans-chalcone, probably due to their stronger intermolecular interactions arising from the functionalized rings. Interestingly, however, it was found that the addition of the thiophene ring in (E)-1-(1H-pyrrol-2-yl)-3-(thiophen-2-yl)prop-2-en-1-one increased both the melting point and solubility of the sample compared with (E)-3-phenyl-1-(1H-pyrrol-2-yl)prop-2-en-1-one. This observation may be key for the future crystal engineering of heterocyclic chalcones for pharmaceutical applications.

6.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 1): 72-76, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31921455

RESUMO

The title compound, C15H10I2O, is a halogenated chalcone formed from two iodine substituted rings, one para-substituted and the other meta-substituted, linked through a prop-2-en-1-one spacer. In the mol-ecule, the mean planes of the 3-iodo-phenyl and the 4-iodo-phenyl groups are twisted by 46.51 (15)°. The calculated electrostatic potential surfaces show the presence of σ-holes on both substituted iodines. In the crystal, the mol-ecules are linked through type II halogen bonds, forming a sheet structure parallel to the bc plane. Between the sheets, weak inter-molecular C-H⋯π inter-actions are observed. Hirshfeld surface analysis showed that the most significant contacts in the structure are C⋯H/H⋯C (31.9%), followed by H⋯H (21.4%), I⋯H/H⋯I (18.4%). I⋯I (14.5%) and O⋯H/H⋯O (8.1%).

7.
Xenobiotica ; 42(12): 1213-24, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22725680

RESUMO

The disposition of 2-Methoxy-4-nitroaniline (MNA) was investigated in male and female Harlan Sprague Dawley rats and B6C3F(1)/N mice following oral, intravenous, and dermal exposure to [(14)C]MNA at 2, 15, or 150 mg/kg. Clearance of MNA was investigated in male and female rat, mouse, and human hepatocytes. MNA was cleared slowly in hepatocytes from rat (t(1/2) = 152-424 min) and human (t(1/2) = 118-403 min) but faster in mouse (t(1/2)= 70-106 min). MNA was well-absorbed in rats and mice following oral administration and eliminated chiefly in urine (rats, 75-79%; mice, 55-68%) 72 h post dosing. Less than 1% of the radioactivity remained in tissues at 72 h. MNA was poorly absorbed following dermal application in rats (5.5%) and mice (10%) over 24 h. The major pathway of metabolism of MNA was via hydroxylation of the phenyl ring to form 6-hydroxy MNA; major metabolites detected were sulfate and glucuronide conjugates of 6-hydroxy MNA. Following oral administration, the percent of total radioactivity bound in tissues bound was highest in liver (43%) and red blood cells (30%), whereas the radioactivity bound to DNA was highest in cecum (160 pmol/mg DNA).


Assuntos
Compostos de Anilina/metabolismo , Compostos de Anilina/farmacocinética , Nitrocompostos/metabolismo , Nitrocompostos/farmacocinética , Caracteres Sexuais , Compostos de Anilina/administração & dosagem , Compostos de Anilina/urina , Animais , Bile/metabolismo , Radioisótopos de Carbono/administração & dosagem , Cromatografia Líquida de Alta Pressão , DNA/metabolismo , Vias de Administração de Medicamentos , Feminino , Hepatócitos/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Espectrometria de Massas , Redes e Vias Metabólicas , Metaboloma , Metabolômica , Camundongos , Nitrocompostos/administração & dosagem , Nitrocompostos/urina , Radioatividade , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual/efeitos dos fármacos
8.
Drug Discov Today ; 17(23-24): 1270-81, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22728777

RESUMO

Protein-ligand structures are the core data required for structure-based drug design (SBDD). Understanding the error present in this data is essential to the successful development of SBDD tools. Methods for assessing protein-ligand structure quality and a new set of identification criteria are presented here. When these criteria were applied to a set of 728 structures previously used to validate molecular docking software, only 17% were found to be acceptable. Structures were re-refined to maintain internal consistency in the comparison and assessment of the quality criteria. This process resulted in Iridium, a highly trustworthy protein-ligand structure database to be used for development and validation of structure-based design tools for drug discovery.


Assuntos
Descoberta de Drogas/métodos , Simulação de Acoplamento Molecular/métodos , Proteínas/química , Sítios de Ligação , Cristalografia por Raios X , Descoberta de Drogas/normas , Ligantes , Simulação de Acoplamento Molecular/normas , Conformação Proteica , Software
9.
J Med Chem ; 46(22): 4702-13, 2003 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-14561090

RESUMO

Inhibition of the biosynthesis of proinflammatory cytokines such as tumor necrosis factor and interleukin-1 via p38 has been an approach toward the development of a disease modifying agent for the treatment of chronic inflammation and autoimmune diseases. The development of a new core structure of p38 inhibitors, 3-(4-fluorophenyl)-2-(pyridin-4-yl)-1H-pyrrolo[3,2-b] pyridine, is described. X-ray crystallographic data of the lead bound to the active site of p38 was used to guide the optimization of the series. Specific focus was placed on modulating the physical properties of the core while maintaining potent inhibition of p38. These efforts identified 42c as a potent inhibitor of p38, which also possessed the required physical properties worthy of advanced studies.


Assuntos
Inibidores Enzimáticos/síntese química , Indóis/síntese química , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Piridinas/síntese química , Administração Oral , Animais , Disponibilidade Biológica , Linhagem Celular , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Ligação de Hidrogênio , Técnicas In Vitro , Indóis/química , Injeções Intravenosas , Proteína Quinase 14 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/química , Modelos Moleculares , Ligação Proteica , Isoformas de Proteínas , Piridinas/química , Piridinas/farmacologia , Ratos , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA