Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biomol Struct Dyn ; : 1-15, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486457

RESUMO

The Japanese encephalitis virus, (JEV), is a flavivirus mostly transmitted by Culex mosquitoes mostly present in Southeast Asia and the Western Pacific region. Ardeid-wading birds are the natural reservoir of JEV; nonetheless, pigs are frequently a key amplifying host during epidemics in human populations. Although more domestic animals and wildlife are JEV hosts, it is unclear how these animals fit into the ecology and epidemiology of the virus. Even though there is no specific therapy, vaccines are available to prevent this infection. However, current vaccinations do not work against every clinical isolate and can cause neurological problems in certain people. In this study, we have screened 501 phytochemical compounds from various plants from the Zingeberaceae family against the RdRp protein of JEV. Based on this, the top five compounds (IMPHY014466, IMPHY004928, IMPHY007097, IMPHY014179 and IMPHY005010) were selected based on the obtained docking scores, which was above -8.0 Kcal/mol. Further, the binding affinity of these selected ligands was also analysed using molecular interaction, and the presence of interactions like hydrogen bonds, hydrophobic bonds and polar bonds with respective active residues were identified and studied elaborately. Furthermore, the dynamic stability of the docked RdRp protein with these selected phytochemicals was studied using Molecular dynamic simulation and essential dynamics. The free energy landscape analysis also provided information about the energy transition responsible stability of the complex. The results obtained advocated phytochemical compounds from the zingeberaceae family for future experimental validation, as these compounds exhibited significant potential as JEV antagonists.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; : 1-18, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38197579

RESUMO

The Dengue virus (DENV) has been increasingly recognized as a prevalent viral pathogen responsible for global transmission of infection. It has been established that DENV's NS5 methyltransferase (MTase) controls viral replication. As a result, NS5 MTase is considered a potentially useful drug target for DENV. In this study, the two phases of virtual screening were conducted using the ML-based QSAR model and molecular docking to identify potential compounds against NS5 of DENV. Four medicinal plants [Aloe vera, Cannabis sativa (Hemp), Ocimum sanctum (Holy Basil; Tulsi), and Zingiber officinale (Ginger)] that showed anti-viral properties were selected for sourcing the phytochemicals and screening them against NS5. Additionally, re-docking at higher exhaustiveness and interaction analysis were performed which resulted in the identification of the top four hits (135398658, 5281675, 119394, and 969516) which showed comparable results with the control Sinefungin (SFG). Post molecular dynamics simulation, 135398658 showed the lowest RMSD (0.4-0.5 nm) and the maximum number of hydrogen bonds (eight hydrogen bonds) after the control while 5281675 and 969516 showed comparable hydrogen bonds to the control. These compounds showed direct interactions with the catalytic site residues GLU111 and ASP131, in addition to this these compounds showed stable complex formation as depicted by principal component analysis and free energy landscape. 135398658 showed lower total binding free energy (ΔGTotal = -36.56 kcal/mol) than the control, while 5281675 had comparable values to the control (ΔGTotal = -34.1 kcal/mol). Overall, the purpose of this study was to identify phytochemicals that inhibit NS5 function, that could be further tested experimentally to treat dengue virus (DENV).Communicated by Ramaswamy H. Sarma.

3.
J Reprod Immunol ; 160: 104159, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37913711

RESUMO

Oligospermia and asthenozoospermia, both frequent, can lead to male infertility. Oligospermia might be viewed as a milder form of azoospermia because the same mutations that produce azoospermia in some individuals also create oligospermia in other individuals. In this, we looked at different characteristics of oligospermia men, counting the level of apoptosis and a few related apoptotic and oxidative stress components, and compared them to solid controls. In this study, semen samples from healthy fertile men (n = 35) and oligospermia (n = 35) were collected, and sperm death rates in both groups were examined using flow cytometry. Also, gene expression of apoptotic and anti-apoptotic markers and miR-221 were investigated (Real-Time PCR). Moreover, for the evaluation of catalase and SOD activity and anti-inflammatory cytokines, including IL-10 and TGF-ß, the specific ELISA kits and procedures were applied. As a result, higher gene and protein expression levels of PTEN, P27, and P57 were observed in patients with oligospermia. In contrast, lower mRNA expression of AKT and miR-221 was detected in this group. In addition, IL-10, TGF-ß, and catalase activity were suppressed in the oligospermia group compared with healthy men samples. Moreover, the frequency of apoptosis of sperm cells is induced in patients. In conclusion, apoptosis-related markers, PTEN, and the measurement of significant and efficient oxidative stress markers like SOD and catalase in semen plasma could be considered as the critical diagnostic markers for oligospermia. Future studies will be better able to treat oligospermia by showing whether these indicators are rising or falling.


Assuntos
Azoospermia , MicroRNAs , Oligospermia , Humanos , Masculino , Oligospermia/genética , Azoospermia/genética , Azoospermia/diagnóstico , Azoospermia/metabolismo , Catalase/genética , Catalase/metabolismo , Interleucina-10/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Superóxido Dismutase/metabolismo , Fator de Crescimento Transformador beta/metabolismo
4.
Sci Rep ; 10(1): 12377, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32704157

RESUMO

The BLM helicase protein plays a vital role in DNA replication and the maintenance of genomic integrity. Variation in the BLM helicase gene resulted in defects in the DNA repair mechanism and was reported to be associated with Bloom syndrome (BS) and cancer. Despite extensive investigation of helicase proteins in humans, no attempt has previously been made to comprehensively analyse the single nucleotide polymorphism (SNPs) of the BLM gene. In this study, a comprehensive analysis of SNPs on the BLM gene was performed to identify, characterize and validate the pathogenic SNPs using computational approaches. We obtained SNP data from the dbSNP database version 150 and mapped these data to the genomic coordinates of the "NM_000057.3" transcript expressing BLM helicase (P54132). There were 607 SNPs mapped to missense, 29 SNPs mapped to nonsense, and 19 SNPs mapped to 3'-UTR regions. Initially, we used many consensus tools of SIFT, PROVEAN, Condel, and PolyPhen-2, which together increased the accuracy of prediction and identified 18 highly pathogenic non-synonymous SNPs (nsSNPs) out of 607 SNPs. Subsequently, these 18 high-confidence pathogenic nsSNPs were analysed for BLM protein stability, structure-function relationships and disease associations using various bioinformatics tools. These 18 mutants of the BLM protein along with the native protein were further investigated using molecular dynamics simulations to examine the structural consequences of the mutations, which might reveal their malfunction and contribution to disease. In addition, 28 SNPs were predicted as "stop gained" nonsense SNPs and one SNP was predicted as "start lost". Two SNPs in the 3'UTR were found to abolish miRNA binding and thus may enhance the expression of BLM. Interestingly, we found that BLM mRNA overexpression is associated with different types of cancers. Further investigation showed that the dysregulation of BLM is associated with poor overall survival (OS) for lung and gastric cancer patients and hence led to the conclusion that BLM has the potential to be used as an important prognostic marker for the detection of lung and gastric cancer.


Assuntos
Biologia Computacional , Bases de Dados de Proteínas , Modelos Moleculares , Polimorfismo de Nucleotídeo Único , RecQ Helicases , Sítios de Ligação , Estabilidade Enzimática , Humanos , RecQ Helicases/química , RecQ Helicases/genética
5.
Front Genet ; 11: 572702, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424918

RESUMO

The emergence of a new coronavirus (CoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for severe respiratory disease in humans termed coronavirus disease of 2019 (COVID-19), became a new global threat for health and the economy. The SARS-CoV-2 genome is about a 29,800-nucleotide-long plus-strand RNA that can form functionally important secondary and higher-order structures called cis-acting RNA elements. These elements can interact with viral proteins, host proteins, or other RNAs and be involved in regulating translation and replication processes of the viral genome and encapsidation of the virus. However, the cis-acting RNA elements and their biological roles in SARS-CoV-2 as well as their comparative analysis in the closely related viral genome have not been well explored, which is very important to understand the molecular mechanism of viral infection and pathogenies. In this study, we used a bioinformatics approach to identify the cis-acting RNA elements in the SARS-CoV-2 genome. Initially, we aligned the full genomic sequence of six different CoVs, and a phylogenetic analysis was performed to understand their evolutionary relationship. Next, we predicted the cis-acting RNA elements in the SARS-CoV-2 genome using the structRNAfinder tool. Then, we annotated the location of these cis-acting RNA elements in different genomic regions of SARS-CoV-2. After that, we analyzed the sequence conservation patterns of each cis-acting RNA element among the six CoVs. Finally, the presence of cis-acting RNA elements across different CoV genomes and their comparative analysis was performed. Our study identified 12 important cis-acting RNA elements in the SARS-CoV-2 genome; among them, Corona_FSE, Corona_pk3, and s2m are highly conserved across most of the studied CoVs, and Thr_leader, MAT2A_D, and MS2 are uniquely present in SARS-CoV-2. These RNA structure elements can be involved in viral translation, replication, and encapsidation and, therefore, can be potential targets for better treatment of COVID-19. It is imperative to further characterize these cis-acting RNA elements experimentally for a better mechanistic understanding of SARS-CoV-2 infection and therapeutic intervention.

6.
Future Virol ; 14(4): 237-246, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32201499

RESUMO

The first case of Middle East respiratory syndrome coronavirus (MERS-CoV) was identified in the year 2012, which spread rapidly and increased to more than 2200 in 2018. This highly pathogenic virus with high mortality rate is among one of the major public health concerns. Saudi Arabia remains to be the most affected region with the majority of MERS-CoV cases, and currently, no effective drugs and vaccines are available for prevention and treatment. A large amount of information is now available regarding the virus, its structure, route of transmission and its pathophysiology. Therefore, this review summarizes the current understanding of MERS-CoV's pathogenesis, treatment options and recent scientific advancements in vaccine and other therapeutic developments, and the major steps taken for MERS prevention control.

7.
R Soc Open Sci ; 5(11): 172164, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30564380

RESUMO

Enzyme immobilization is one of the most important techniques for industrial applications. It makes the immobilized enzyme more stable and advantageous than the free form in different aspects. α-Amylase was immobilized on 4% cyanuric chloride-activated amidoximated acrylic fabric at pH 7.0 with (79%) maximum efficiency. A field emission scanning electron microscope and Fourier transform infrared were used to confirm the immobilization process. Even after being recycled 10 times, the immobilized enzyme lost just 28% of its initial activity. Owing to immobilization, the pH of the soluble α-amylase was shifted from 6.0 to 6.5. The immobilized α-amylases showed thermal stability at 60°C, and became more resistant to heavy metal ions. The k m values of the immobilized and soluble α-amylases were 9.6 and 3.8 mg starch ml-1, respectively. In conclusion, this method shows that the immobilized α-amylase proved to be more efficient than its soluble form, and hence could be used during saccharification of starch.

8.
Biomed Res Int ; 2018: 9056173, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29854806

RESUMO

IL-2 is a powerful immune growth factor and it plays important role in sustaining T cell response. The potential of IL-2 in expanding T cells without loss of functionality has led to its early use in cancer immunotherapy. IL-2 has been reported to induce complete and durable regressions in cancer patients but immune related adverse effects have been reported (irAE). The present review discusses the prospects of IL-2 in immunotherapy for cancer.


Assuntos
Imunoterapia , Interleucina-2/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Animais , Relação Dose-Resposta Imunológica , Humanos , Modelos Biológicos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA