Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell Rep Med ; 5(4): 101503, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593810

RESUMO

In monogenic autoinflammatory diseases, mutations in genes regulating innate immune responses often lead to uncontrolled activation of inflammasome pathways or the type I interferon (IFN-I) response. We describe a mechanism of autoinflammation potentially predisposing patients to life-threatening necrotizing soft tissue inflammation. Six unrelated families are identified in which affected members present with necrotizing fasciitis or severe soft tissue inflammations. Exome sequencing reveals truncating monoallelic loss-of-function variants of nuclear factor κ light-chain enhancer of activated B cells (NFKB1) in affected patients. In patients' macrophages and in NFKB1-variant-bearing THP-1 cells, activation increases both interleukin (IL)-1ß secretion and IFN-I signaling. Truncation of NF-κB1 impairs autophagy, accompanied by the accumulation of reactive oxygen species and reduced degradation of inflammasome receptor nucleotide-binding oligomerization domain, leucine-rich repeat-containing protein 3 (NLRP3), and Toll/IL-1 receptor domain-containing adaptor protein inducing IFN-ß (TRIF), thus leading to combined excessive inflammasome and IFN-I activity. Many of the patients respond to anti-inflammatory treatment, and targeting IL-1ß and/or IFN-I signaling could represent a therapeutic approach for these patients.


Assuntos
Fasciite Necrosante , Interferon Tipo I , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Imunidade Inata , Inflamação/metabolismo , Subunidade p50 de NF-kappa B
2.
Nature ; 628(8009): 844-853, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570685

RESUMO

Mitochondria are critical modulators of antiviral tolerance through the release of mitochondrial RNA and DNA (mtDNA and mtRNA) fragments into the cytoplasm after infection, activating virus sensors and type-I interferon (IFN-I) response1-4. The relevance of these mechanisms for mitochondrial diseases remains understudied. Here we investigated mitochondrial recessive ataxia syndrome (MIRAS), which is caused by a common European founder mutation in DNA polymerase gamma (POLG1)5. Patients homozygous for the MIRAS variant p.W748S show exceptionally variable ages of onset and symptoms5, indicating that unknown modifying factors contribute to disease manifestation. We report that the mtDNA replicase POLG1 has a role in antiviral defence mechanisms to double-stranded DNA and positive-strand RNA virus infections (HSV-1, TBEV and SARS-CoV-2), and its p.W748S variant dampens innate immune responses. Our patient and knock-in mouse data show that p.W748S compromises mtDNA replisome stability, causing mtDNA depletion, aggravated by virus infection. Low mtDNA and mtRNA release into the cytoplasm and a slow IFN response in MIRAS offer viruses an early replicative advantage, leading to an augmented pro-inflammatory response, a subacute loss of GABAergic neurons and liver inflammation and necrosis. A population databank of around 300,000 Finnish individuals6 demonstrates enrichment of immunodeficient traits in carriers of the POLG1 p.W748S mutation. Our evidence suggests that POLG1 defects compromise antiviral tolerance, triggering epilepsy and liver disease. The finding has important implications for the mitochondrial disease spectrum, including epilepsy, ataxia and parkinsonism.


Assuntos
Alelos , DNA Polimerase gama , Vírus da Encefalite Transmitidos por Carrapatos , Herpesvirus Humano 1 , Tolerância Imunológica , SARS-CoV-2 , Animais , Feminino , Humanos , Masculino , Camundongos , Idade de Início , COVID-19/imunologia , COVID-19/virologia , COVID-19/genética , DNA Polimerase gama/genética , DNA Polimerase gama/imunologia , DNA Polimerase gama/metabolismo , DNA Mitocondrial/imunologia , DNA Mitocondrial/metabolismo , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/genética , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/virologia , Efeito Fundador , Técnicas de Introdução de Genes , Herpes Simples/genética , Herpes Simples/imunologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/imunologia , Mutação , RNA Mitocondrial/imunologia , RNA Mitocondrial/metabolismo , SARS-CoV-2/imunologia
3.
Am J Hum Genet ; 111(4): 714-728, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579669

RESUMO

Argininosuccinate lyase deficiency (ASLD) is a recessive metabolic disorder caused by variants in ASL. In an essential step in urea synthesis, ASL breaks down argininosuccinate (ASA), a pathognomonic ASLD biomarker. The severe disease forms lead to hyperammonemia, neurological injury, and even early death. The current treatments are unsatisfactory, involving a strict low-protein diet, arginine supplementation, nitrogen scavenging, and in some cases, liver transplantation. An unmet need exists for improved, efficient therapies. Here, we show the potential of a lipid nanoparticle-mediated CRISPR approach using adenine base editors (ABEs) for ASLD treatment. To model ASLD, we first generated human-induced pluripotent stem cells (hiPSCs) from biopsies of individuals homozygous for the Finnish founder variant (c.1153C>T [p.Arg385Cys]) and edited this variant using the ABE. We then differentiated the hiPSCs into hepatocyte-like cells that showed a 1,000-fold decrease in ASA levels compared to those of isogenic non-edited cells. Lastly, we tested three different FDA-approved lipid nanoparticle formulations to deliver the ABE-encoding RNA and the sgRNA targeting the ASL variant. This approach efficiently edited the ASL variant in fibroblasts with no apparent cell toxicity and minimal off-target effects. Further, the treatment resulted in a significant decrease in ASA, to levels of healthy donors, indicating restoration of the urea cycle. Our work describes a highly efficient approach to editing the disease-causing ASL variant and restoring the function of the urea cycle. This method relies on RNA delivered by lipid nanoparticles, which is compatible with clinical applications, improves its safety profile, and allows for scalable production.


Assuntos
Argininossuccinato Liase , Acidúria Argininossuccínica , Humanos , Argininossuccinato Liase/genética , Acidúria Argininossuccínica/genética , Acidúria Argininossuccínica/terapia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , RNA Guia de Sistemas CRISPR-Cas , Ureia , Edição de Genes/métodos
4.
Sci Rep ; 14(1): 4306, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383731

RESUMO

Rare or novel missense variants in large genes such as TTN and NEB are frequent in the general population, which hampers the interpretation of putative disease-causing biallelic variants in patients with sporadic neuromuscular disorders. Often, when the first initial genetic analysis is performed, the reconstructed haplotype, i.e. phasing information of the variants is missing. Segregation analysis increases the diagnostic turnaround time and is not always possible if samples from family members are lacking. To overcome this difficulty, we investigated how well the linked-read technology succeeded to phase variants in these large genes, and whether it improved the identification of structural variants. Linked-read sequencing data of nemaline myopathy, distal myopathy, and proximal myopathy patients were analyzed for phasing, single nucleotide variants, and structural variants. Variant phasing was successful in the large muscle genes studied. The longest continuous phase blocks were gained using high-quality DNA samples with long DNA fragments. Homozygosity increased the number of phase blocks, especially in exome sequencing samples lacking intronic variation. In our cohort, linked-read sequencing added more information about the structural variation but did not lead to a molecular genetic diagnosis. The linked-read technology can support the clinical diagnosis of neuromuscular and other genetic disorders.


Assuntos
Doenças Musculares , Miopatias da Nemalina , Doenças Neuromusculares , Humanos , Haplótipos/genética , Doenças Neuromusculares/diagnóstico , Doenças Neuromusculares/genética , DNA , Sequenciamento de Nucleotídeos em Larga Escala
5.
Mol Genet Metab Rep ; 31: 100863, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35782600

RESUMO

Hyperornithinemia with gyrate atrophy of the choroid and retina (HOGA) is a severe recessive inherited disease, causing muscular degeneration and retinochoroidal atrophy that progresses to blindness. HOGA arises from mutations in the ornithine aminotransferase (OAT) gene, and nearly one-third of the known patients worldwide are homozygous for the Finnish founder mutation OAT c.1205 T > C p.(Leu402Pro). We have corrected this loss-of-function OAT mutation in patient-derived induced pluripotent stem cells (iPSCs) using CRISPR/Cas9. The correction restored OAT expression in stem cells and normalized the elevated ornithine levels in cell lysates and cell media. These results show an efficient recovery of OAT function in iPSC, encouraging the possibility of autologous cell therapy for the HOGA disease.

6.
Stem Cell Reports ; 16(12): 3064-3075, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34822772

RESUMO

Human induced pluripotent stem cells (hiPSCs) allow in vitro study of genetic diseases and hold potential for personalized stem cell therapy. Gene editing, precisely modifying specifically targeted loci, represents a valuable tool for different hiPSC applications. This is especially useful in monogenic diseases to dissect the function of unknown mutations or to create genetically corrected, patient-derived hiPSCs. Here we describe a highly efficient method for simultaneous base editing and reprogramming of fibroblasts employing a CRISPR-Cas9 adenine base editor. As a proof of concept, we apply this approach to generate gene-edited hiPSCs from skin biopsies of four patients carrying a Finnish-founder pathogenic point mutation in either NOTCH3 or LDLR genes. We also show LDLR activity restoration after the gene correction. Overall, this method yields tens of gene-edited hiPSC monoclonal lines with unprecedented efficiency and robustness while considerably reducing the cell culture time and thus the risk for in vitro alterations.


Assuntos
Reprogramação Celular/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Edição de Genes , Sequência de Bases , Células Cultivadas , Endoderma/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Fenótipo , RNA/genética , Receptor Notch3/genética , Receptores de LDL/genética , Transgenes
7.
J Community Genet ; 12(2): 267-276, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32803721

RESUMO

Diseases caused by alterations in the DNA can be overcome by providing the cells or tissues with a functional copy of the mutated gene. The most common form of gene therapy implies adding an extra genetic unit into the cell. However, new genome engineering techniques also allow the modification or correction of the existing allele, providing new possibilities, especially for dominant diseases. Gene therapies have been tested for 30 years in thousands of clinical trials, but presently, we have only three authorised gene therapy products for the treatment of inherited diseases in European Union. Here, we describe the gene therapy alternatives already on the market in the European Union and expand the scope to some clinical trials. Additionally, we discuss the ethical and regulatory issues raised by the development of these new kinds of therapies.

8.
Bioethics ; 34(1): 16-32, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31877579

RESUMO

Potential applications of genome editing in assisted reproductive technology (ART) raise a vast array of strong opinions, emotional reactions and divergent perceptions. Acknowledging the need for caution and respecting such reactions, we observe that at least some are based on either a misunderstanding of the science or misconceptions about the content and flexibility of the existing legal frameworks. Combining medical, legal and ethical expertise, we present and discuss regulatory responses at the national, European and international levels. The discussion has an EU starting point and is meant as a contribution to the general international regulatory debate. Overall, this paper concludes that gene editing technologies should not be regulated autonomously. Rather, potential uses should be regulated under general, existing frameworks and where applicable by reference to sufficiently equivalent technologies and techniques already subject to specific regulation. To be clear, we do not argue for the hasty introduction of gene editing as a reproductive treatment option in the immediate future. We call for caution with regard to overreaching moratoria and prohibitions that will also affect basic research. We recommend flexible regulations that allow for further responsible research into the potential development of the technology. We call for an open and inclusive debate and argue that scientific communication should claim a more prominent role to counter the danger of widespread misinformation. A high level of transparency and accuracy should guide scientific communication while simultaneously global-scale responsibility and governance should be fostered by promoting cross-disciplinary thinking and multi-level stakeholder involvement in legal and regulatory processes.


Assuntos
Edição de Genes/ética , Edição de Genes/legislação & jurisprudência , Células Germinativas , Técnicas de Reprodução Assistida/ética , Técnicas de Reprodução Assistida/legislação & jurisprudência , Difusão de Inovações , Pesquisas com Embriões/ética , União Europeia , Edição de Genes/tendências , Humanos , Direito Internacional , Técnicas de Reprodução Assistida/tendências
9.
PLoS One ; 14(1): e0208237, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30645582

RESUMO

Sickle Cell Disease and ß-thalassemia, which are caused by defective or deficient adult ß-globin (HBB) respectively, are the most common serious genetic blood diseases in the world. Persistent expression of the fetal ß-like globin, also known as 𝛾-globin, can ameliorate both disorders by serving in place of the adult ß-globin as a part of the fetal hemoglobin tetramer (HbF). Here we use CRISPR-Cas9 gene editing to explore a potential 𝛾-globin silencer region upstream of the δ-globin gene identified by comparison of naturally-occurring deletion mutations associated with up-regulated 𝛾-globin. We find that deletion of a 1.7 kb consensus element or select 350 bp sub-regions from bulk populations of cells increases levels of HbF. Screening of individual sgRNAs in one sub-region revealed three single guides that caused increases in 𝛾-globin expression. Deletion of the 1.7 kb region in HUDEP-2 clonal sublines, and in colonies derived from CD34+ hematopoietic stem/progenitor cells (HSPCs), does not cause significant up-regulation of 𝛾-globin. These data suggest that the 1.7 kb region is not an autonomous 𝛾-globin silencer, and thus by itself is not a suitable therapeutic target for gene editing treatment of ß-hemoglobinopathies.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Células Eritroides/metabolismo , Hemoglobina Fetal/metabolismo , Proteínas Repressoras/metabolismo , Linhagem Celular , DNA Intergênico/genética , Edição de Genes , Inativação Gênica , Genótipo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Fenótipo , Deleção de Sequência/genética , Regulação para Cima/genética , gama-Globinas/genética
10.
Eur J Hum Genet ; 27(3): 484-487, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30568241

RESUMO

Clinical trials using somatic gene editing (e.g., CRISPR-Cas9) have started in Europe and the United States and may provide safe and effective treatment and cure, not only for cancers but also for some monogenic conditions. In a workshop at the 2018 European Human Genetics Conference, the challenges of bringing somatic gene editing therapies to the clinic were discussed. The regulatory process needs to be considered early in the clinical development pathway to produce the data necessary to support the approval by the European Medicines Agency. The roles and responsibilities for geneticists may include counselling to explain the treatment possibilities and safety interpretation.


Assuntos
Congressos como Assunto , Terapia Genética/métodos , Genética Médica/métodos , Sistemas CRISPR-Cas , Ensaios Clínicos como Assunto , Edição de Genes/métodos , Humanos
11.
Elife ; 72018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30412052

RESUMO

Insulin gene mutations are a leading cause of neonatal diabetes. They can lead to proinsulin misfolding and its retention in endoplasmic reticulum (ER). This results in increased ER-stress suggested to trigger beta-cell apoptosis. In humans, the mechanisms underlying beta-cell failure remain unclear. Here we show that misfolded proinsulin impairs developing beta-cell proliferation without increasing apoptosis. We generated induced pluripotent stem cells (iPSCs) from people carrying insulin (INS) mutations, engineered isogenic CRISPR-Cas9 mutation-corrected lines and differentiated them to beta-like cells. Single-cell RNA-sequencing analysis showed increased ER-stress and reduced proliferation in INS-mutant beta-like cells compared with corrected controls. Upon transplantation into mice, INS-mutant grafts presented reduced insulin secretion and aggravated ER-stress. Cell size, mTORC1 signaling, and respiratory chain subunits expression were all reduced in INS-mutant beta-like cells, yet apoptosis was not increased at any stage. Our results demonstrate that neonatal diabetes-associated INS-mutations lead to defective beta-cell mass expansion, contributing to diabetes development.


Assuntos
Diabetes Mellitus/genética , Estresse do Retículo Endoplasmático/genética , Células-Tronco Pluripotentes Induzidas/química , Proinsulina/genética , Animais , Apoptose/genética , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Diabetes Mellitus/patologia , Retículo Endoplasmático/genética , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Recém-Nascido , Células Secretoras de Insulina/química , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Mutação , Proinsulina/química , Dobramento de Proteína , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única
12.
Stem Cell Res ; 23: 105-108, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28925359

RESUMO

OCT4 is a crucial transcription factor in the pluripotent stem cell gene regulatory network and an essential factor for pluripotent reprogramming. We engineered the previously reported HEL24.3 hiPSC to generate an OCT4 reporter cell line by knocking-in a T2A nuclear EmGFP reporter cassette before the OCT4 gene STOP codon sequence. To enhance targeted insertion, homologous recombination was stimulated using targeted cutting at the OCT4 STOP codon with CRISPR/SpCas9. This HEL24.3-OCT4-nEmGFP cell line faithfully reports endogenous OCT4 expression, serving as a useful tool to examine temporal changes in OCT4 expression in live cells during hiPSC culture, differentiation and somatic cell reprogramming.


Assuntos
Sistemas CRISPR-Cas/genética , Técnicas de Cultura de Células/métodos , Genes Reporter , Células-Tronco Pluripotentes Induzidas/citologia , Fator 3 de Transcrição de Octâmero/metabolismo , Linhagem Celular , Humanos
13.
Stem Cell Res ; 22: 16-19, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28952927

RESUMO

SOX2 is an important transcription factor involved in pluripotency maintenance, pluripotent reprogramming and differentiation towards neural lineages. Here we engineered the previously described HEL24.3 hiPSC to generate a SOX2 reporter by knocking-in a T2A fused nuclear tdTomato reporter cassette before the STOP codon of the SOX2 gene coding sequence. CRISPR/SaCas9-mediated stimulation of homologous recombination was utilized to facilitate faithful targeted insertion. This line accurately reports the expression of endogenous SOX2 and therefore constitutes a useful tool to study the SOX2 expression dynamics upon hiPSC culture, differentiation and somatic cell reprogramming.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Pluripotentes Induzidas/fisiologia , Fatores de Transcrição SOXB1/genética , Diferenciação Celular/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição SOXB1/biossíntese
14.
Cell Rep ; 19(2): 281-294, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28402852

RESUMO

Activating germline mutations in STAT3 were recently identified as a cause of neonatal diabetes mellitus associated with beta-cell autoimmunity. We have investigated the effect of an activating mutation, STAT3K392R, on pancreatic development using induced pluripotent stem cells (iPSCs) derived from a patient with neonatal diabetes and pancreatic hypoplasia. Early pancreatic endoderm differentiated similarly from STAT3K392R and healthy-control cells, but in later stages, NEUROG3 expression was upregulated prematurely in STAT3K392R cells together with insulin (INS) and glucagon (GCG). RNA sequencing (RNA-seq) showed robust NEUROG3 downstream targets upregulation. STAT3 mutation correction with CRISPR/Cas9 reversed completely the disease phenotype. STAT3K392R-activating properties were not explained fully by altered DNA-binding affinity or increased phosphorylation. Instead, reporter assays demonstrated NEUROG3 promoter activation by STAT3 in pancreatic cells. Furthermore, proteomic and immunocytochemical analyses revealed increased nuclear translocation of STAT3K392R. Collectively, our results demonstrate that the STAT3K392R mutation causes premature endocrine differentiation through direct induction of NEUROG3 expression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Diferenciação Celular/genética , Diabetes Mellitus/genética , Proteínas do Tecido Nervoso/biossíntese , Fator de Transcrição STAT3/genética , Autoimunidade/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sistemas CRISPR-Cas , Linhagem Celular , Diabetes Mellitus/etiologia , Diabetes Mellitus/patologia , Regulação da Expressão Gênica no Desenvolvimento , Glucagon/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Mutação , Proteínas do Tecido Nervoso/genética , Regiões Promotoras Genéticas , Fator de Transcrição STAT3/biossíntese
15.
Stem Cell Reports ; 5(3): 448-59, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26352799

RESUMO

CRISPR/Cas9 protein fused to transactivation domains can be used to control gene expression in human cells. In this study, we demonstrate that a dCas9 fusion with repeats of VP16 activator domains can efficiently activate human genes involved in pluripotency in various cell types. This activator in combination with guide RNAs targeted to the OCT4 promoter can be used to completely replace transgenic OCT4 in human cell reprogramming. Furthermore, we generated a chemically controllable dCas9 activator version by fusion with the dihydrofolate reductase (DHFR) destabilization domain. Finally, we show that the destabilized dCas9 activator can be used to control human pluripotent stem cell differentiation into endodermal lineages.


Assuntos
Sistemas CRISPR-Cas , Diferenciação Celular , Técnicas de Reprogramação Celular , Reprogramação Celular , Regulação da Expressão Gênica , Adolescente , Idoso , Feminino , Células HEK293 , Humanos , Masculino
16.
Cell Metab ; 15(1): 100-9, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22225879

RESUMO

Somatic stem cell (SSC) dysfunction is typical for different progeroid phenotypes in mice with genomic DNA repair defects. MtDNA mutagenesis in mice with defective Polg exonuclease activity also leads to progeroid symptoms, by an unknown mechanism. We found that Polg-Mutator mice had neural (NSC) and hematopoietic progenitor (HPC) dysfunction already from embryogenesis. NSC self-renewal was decreased in vitro, and quiescent NSC amounts were reduced in vivo. HPCs showed abnormal lineage differentiation leading to anemia and lymphopenia. N-acetyl-L-cysteine treatment rescued both NSC and HPC abnormalities, suggesting that subtle ROS/redox changes, induced by mtDNA mutagenesis, modulate SSC function. Our results show that mtDNA mutagenesis affected SSC function early but manifested as respiratory chain deficiency in nondividing tissues in old age. Deletor mice, having mtDNA deletions in postmitotic cells and no progeria, had normal SSCs. We propose that SSC compartment is sensitive to mtDNA mutagenesis, and that mitochondrial dysfunction in SSCs can underlie progeroid manifestations.


Assuntos
DNA Mitocondrial/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Neurais/citologia , Acetilcisteína/farmacologia , Animais , Diferenciação Celular/genética , DNA Mitocondrial/metabolismo , Transporte de Elétrons , Eritropoese , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Linfopoese , Camundongos , Camundongos Mutantes , Doenças Mitocondriais/patologia , Mutagênese , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Oxirredução , Fenótipo , Espécies Reativas de Oxigênio/metabolismo
17.
Differentiation ; 80(1): 68-77, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20447748

RESUMO

The oncogenic transcription factor Myc has an established role in the regulation of stem cell self-renewal and differentiation. However, the regulation of Myc activity or expression in stem and progenitor cells is not thoroughly understood. We studied the expression and function of the Myc stabilizing protein and a newly found oncogene, cancerous inhibitor of protein phosphatase 2A (CIP2A) in mouse neural progenitor cells (NPCs). We found intensive CIP2A expression in the neurogenic areas of the developing E13 as well as of the adult mouse brain. Here we also show that retroviral overexpression of CIP2A increases and siRNA silencing of CIP2A decreases NPC self-renewal and proliferation. Differentiation of the NPCs correlates with diminished CIP2A expression although overexpression of CIP2A does not prevent differentiation of neurons and astrocytes. Lastly, we demonstrate that both Myc and CIP2A enhance each other's expression and siRNA against CIP2A in Myc-overexpressing NPCs significantly reduces the ability of Myc to increase self-renewal and proliferation thus indicating a functional connection between CIP2A and Myc in NPCs.


Assuntos
Autoantígenos/metabolismo , Diferenciação Celular , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Proteínas de Membrana/metabolismo , Neurônios/citologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , Animais , Autoantígenos/genética , Western Blotting , Ciclo Celular , Proliferação de Células , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Células-Tronco Embrionárias/metabolismo , Citometria de Fluxo , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/farmacologia , Regeneração , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
J Neurooncol ; 97(2): 217-24, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19779861

RESUMO

Medulloblastomas (MB) and primitive neuroectodermal tumors (PNET) are the most common malignant brain tumors in children. These two tumor types are histologically similar, but have different genetic backgrounds and clinical outcomes. Other brain tumors, such as gliomas, frequently have coamplification and overexpression of receptor tyrosine kinases KIT, platelet-derived growth factor receptor alpha (PDGFRA), and vascular endothelial growth factor receptor 2 (VEGFR2). We investigated protein expression and gene copy numbers of KIT, PDGFRA, and VEGFR2 in 41 MB and 11 PNET samples by immunohistochemistry (IHC) and chromogenic in situ hybridization (CISH). KIT and PDGFRA expression was detected in both MBs and PNETs, whereas VEGFR2 expression was weak in these tumors. KIT, PDGFRA, and VEGFR2 amplifications were all present in 4% of MBs/PNETs, and KIT amplification was associated with concurrent PDGFRA and VEGFR2 amplifications (P

Assuntos
Neoplasias Encefálicas/metabolismo , Meduloblastoma/metabolismo , Tumores Neuroectodérmicos Primitivos/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/biossíntese , Fator de Células-Tronco/biossíntese , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/mortalidade , Dosagem de Genes , Humanos , Imuno-Histoquímica , Hibridização In Situ , Estimativa de Kaplan-Meier , Masculino , Meduloblastoma/genética , Tumores Neuroectodérmicos Primitivos/genética , Tumores Neuroectodérmicos Primitivos/mortalidade , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Fator de Células-Tronco/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
19.
Int J Stem Cells ; 3(1): 46-53, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-24855540

RESUMO

Neural stem cells contribute to mammalian brain tissue turnover in specific locations throughout life. Differentiation of stem cells is associated with terminal mitosis and cell cycle exit, but it is unclear how the timing and signaling of these are interlinked. Here, we have investigated the cell cycle exit characteristics in comparison with morphological changes during hippocampal stem cell differentiation in an adult mammalian cell line. Our results suggest that the cell-specific gene pathway induction is fast and robust and takes place in one day, whereas the cell cycle exit machinery is slower and takes several days to fully execute. The hippocampal differentiation is associated with epigenetic changes, such as Ezh2 down regulation and histone methylation. A small percentage of stem cells is able to resist differentiation-induced terminal mitosis for weeks in culture, and can be reverted to proliferation by re-adding the mitotic growth factors.

20.
Pathogenetics ; 2(1): 2, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19400947

RESUMO

BACKGROUND: Hydrolethalus syndrome (HLS) is a severe fetal malformation syndrome characterized by multiple developmental anomalies, including central nervous system (CNS) malformation such as hydrocephaly and absent midline structures of the brain, micrognathia, defective lobation of the lungs and polydactyly. Microscopically, immature cerebral cortex, abnormalities in radial glial cells and hypothalamic hamartoma are among key findings in the CNS of HLS fetuses. HLS is caused by a substitution of aspartic acid by glycine in the HYLS1 protein, whose function was previously unknown. RESULTS: To provide insight into the disease mechanism(s) of this lethal disorder we have studied different aspects of HLS and HYLS1. A genome-wide gene expression analysis indicated several upregulated genes in cell cycle regulatory cascades and in specific signal transduction pathways while many downregulated genes were associated with lipid metabolism. These changes were supported by findings in functional cell biology studies, which revealed an increased cell cycle rate and a decreased amount of apoptosis in HLS neuronal progenitor cells. Also, changes in lipid metabolism gene expression were reflected by a significant increase in the cholesterol levels of HLS liver tissues. In addition, based on our functional studies of HYLS1, we propose that HYLS1 is a transcriptional regulator that shuffles between the cytoplasm and the nucleus, and that when HYLS1 is mutated its function is significantly altered. CONCLUSION: In this study, we have shown that the HYLS1 mutation has significant consequences in the cellular and tissue levels in HLS fetuses. Based on these results, it can be suggested that HYLS1 is part of the cellular transcriptional regulatory machinery and that the genetic defect has a widespread effect during embryonic and fetal development. These findings add a significant amount of new information to the pathogenesis of HLS and strongly suggest an essential role for HYLS1 in normal fetal development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA