Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35215343

RESUMO

Carpaine has long been identified as the major alkaloid in Carica papaya leaves that possess muscle relaxant properties. Limited study on the molecular signaling properties of carpaine urges us to conduct this study that aims to elucidate the mechanism underlying the cardioprotective effect of carpaine in embryonic cardiomyocytes of the H9c2 cell line. The 50% inhibitory concentration (IC50) of carpaine was first determined using a colorimetric MTT assay to establish the minimum inhibitory concentration for the subsequent test. Using a 1 µM carpaine treatment, a significant increase in the H9c2 proliferation rate was observed following 24 and 48 h of incubation. A Western blot analysis also revealed that carpaine promotes the upregulation of the cell cycle marker proteins cyclin D1 and PCNA. Carpaine-induced H9c2 cell proliferation is mediated by the activation of the FAK-ERK1/2 and FAK-AKT signaling pathways. In the setting of ischemia-reperfusion injury (IRI), carpaine provided a significant protective role to recover the wounded area affected by the hydrogen peroxide (H2O2) treatment. Furthermore, the oxidative-stress-induced reduction in mitochondrial membrane potential (MMP) and overproduction of reactive oxygen species (ROS) were attenuated by carpaine treatment. The current study revealed a novel therapeutic potential of carpaine in promoting in vitro cardiomyocyte proliferation and repair following injury.

2.
J Pharm Bioallied Sci ; 12(Suppl 2): S826-S830, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33828384

RESUMO

INTRODUCTION: κ-opioid receptor (KOPr) system has been linked to relapse to many substances, especially opioids. Positive responses were recently reported in morphine and methamphetamine (polydrug)-dependent mice treated with buprenorphine and naltrexone, a functional κ antagonist. OBJECTIVES: This study aimed to determine the specific brain region that is responsive to KOPr treatment following polydrug dependence. MATERIALS AND METHODS: The polydrug-dependent mice model was developed using conditioned place preference (CPP) method. Following successful withdrawal phase, the mice were treated with 0.3 mg/kg buprenorphine and 1.0 mg/kg naltrexone. Four brain regions (hippocampus, prefrontal cortex, amygdala, and striatum) were investigated using immunohistochemistry technique. This is to quantify the changes in KOPr expression in each major brain region that was primarily involved in addiction neurocircuits of many substances. Unpaired Student's t test was used to analyze all results, where P < 0.05 is considered significant. RESULTS: The results showed that treatment with buprenorphine and naltrexone successfully attenuated relapse in 60% of mice (n = 14). A significant upregulation of KOPr was detected in striatum at the end of post-withdrawal phase (P < 0.01, n = 12). This treatment successfully suppressed KOPr in striatum (P < 0.001, n = 12), which supports the positive results seen in the CPP setting. No significant changes were observed in other brain regions studied. CONCLUSION: The hyperactivity of striatum suggests that the affected brain region following KOPr antagonist treatment is the region that primarily controls the drug rewarding activity, in which nucleus accumbens is located. This indicates that manipulation of KOPr system is one of the potential targets to treat morphine- or methamphetamine-dependence problem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA