Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Invest ; 118(3): 975-83, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18259611

RESUMO

Thyroid hormone is a critical determinant of cellular metabolism and differentiation. Precise tissue-specific regulation of the active ligand 3,5,3'-triiodothyronine (T3) is achieved by the sequential removal of iodine groups from the thyroid hormone molecule, with type 3 deiodinase (D3) comprising the major inactivating pathway that terminates the action of T3 and prevents activation of the prohormone thyroxine. Using cells endogenously expressing D3, we found that hypoxia induced expression of the D3 gene DIO3 by a hypoxia-inducible factor-dependent (HIF-dependent) pathway. D3 activity and mRNA were increased both by hypoxia and by hypoxia mimetics that increase HIF-1. Using ChIP, we found that HIF-1alpha interacted specifically with the DIO3 promoter, indicating that DIO3 may be a direct transcriptional target of HIF-1. Endogenous D3 activity decreased T3-dependent oxygen consumption in both neuronal and hepatocyte cell lines, suggesting that hypoxia-induced D3 may reduce metabolic rate in hypoxic tissues. Using a rat model of cardiac failure due to RV hypertrophy, we found that HIF-1alpha and D3 proteins were induced specifically in the hypertrophic myocardium of the RV, creating an anatomically specific reduction in local T3 content and action. These results suggest a mechanism of metabolic regulation during hypoxic-ischemic injury in which HIF-1 reduces local thyroid hormone signaling through induction of D3.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Hipóxia/metabolismo , Iodeto Peroxidase/fisiologia , Isquemia/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Indução Enzimática , Hipertrofia Ventricular Direita/metabolismo , Masculino , Ratos , Ratos Wistar , Transdução de Sinais , Tri-Iodotironina/fisiologia
2.
Endocrinology ; 145(9): 4251-63, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15192045

RESUMO

Three iodothyronine deiodinases (D1, D2, and D3) regulate local and systemic availability of thyroid hormone. D1 and D2 activate the prohormone T4 to the thyromimetic T3, and D3 inactivates T4 and T3 to rT3 and 3,3'-diiodothyronine, respectively. The expression of the three deiodinases is tightly regulated with regard to developmental stage and cell type to provide fine tuning of T3 supply to target cells. Most studies regarding distribution and regulation of deiodinases have been carried out in rodents. However, in different respects, rodents do not seem to be the optimal experimental model for human thyroid hormone physiology. For instance, D2 expression has been observed in human thyroid and skeletal muscle but not in these tissues in rodents. In this study, we have explored the pig as an alternative model. Porcine D1, D2, and D3 were cloned by RT-PCR, and their catalytic properties were shown to be virtually identical to those reported for human and rodent deiodinases. The tissue distribution of deiodinases was studied in normal pigs and in pigs made hypothyroid by methimazole treatment or in pigs made hyperthyroid by T4 treatment. D1 activity in liver and kidney was increased in T4-treated pigs. D2 activities in cerebrum and pituitary were decreased after T4 treatment and strongly increased after methimazole treatment. Remarkably, D2 activity in thyroid and skeletal muscle was induced in hypothyroid pigs. Significant expression of D3 was observed in cerebrum and was positively regulated by thyroid state. In conclusion, the pig appears to be a valuable model for human thyroid hormone physiology. The expression of D2 activity in thyroid and skeletal muscle is of particular interest for studies on the importance of this enzyme in (hypothyroid) humans.


Assuntos
Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Glândula Tireoide/enzimologia , Sequência de Aminoácidos , Animais , Pressão Sanguínea , Catálise , Clonagem Molecular , Feminino , Frequência Cardíaca , Rim/enzimologia , Fígado/enzimologia , Masculino , Dados de Sequência Molecular , Músculo Esquelético/enzimologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sus scrofa , Telencéfalo/enzimologia , Iodotironina Desiodinase Tipo II
3.
Endocrinology ; 143(7): 2812-5, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12072417

RESUMO

The similarities between the changes in cardiac gene expression in pathological ventricular hypertrophy and hypothyroidism suggest a role of impaired cardiac thyroid hormone (TH) action in the development of contractile dysfunction during chronic cardiac pressure overload. Here we studied the possible involvement of altered cardiac TH metabolism using a rat model of right-ventricular (RV) hypertrophy induced by pressure-overload. Pathological RV hypertrophy was indicated by decreased mRNA levels of sarcoplasmic reticulum(SR) Ca2-ATPase type 2a (SERCA2a) and myosin heavy chain a (MHCalpha), and increased levels of MHCbeta mRNA. Enzyme activity of type HI deiodinase (D3), which converts T4 and T3 to the inactive compounds rT3 and 3,3'-T2, respectively, was identified in ventricular tissue. This activity was stimulated up to five fold in hypertrophic RV, but remained unaltered in the non-hypertrophic left ventricle (LV). A low level of type Ideiodinase activity was also detected, which decreased significantly in both RV and LV. Stimulation of RV D3 activity was significantly higher in those animals in which hypertrophy progressed to heart failure, compared to animals that developed compensatory hypertrophy. The induction of a cardiac TR-degrading deiodinase maybe expected to result in reduced cellular levels of T3 and thereby contribute to a local hypothyroid state in the hypertrophic and, particularly, in the failing ventricle.


Assuntos
Cardiomegalia/enzimologia , Insuficiência Cardíaca/enzimologia , Iodeto Peroxidase/biossíntese , Animais , Peso Corporal/fisiologia , Regulação Enzimológica da Expressão Gênica , Ventrículos do Coração/enzimologia , Iodeto Peroxidase/genética , Masculino , Tamanho do Órgão/fisiologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Wistar , Hormônios Tireóideos/sangue , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA