Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Elife ; 122023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37096871

RESUMO

The immune system plays a major role in maintaining many physiological processes in the reproductive system. However, a complete characterization of the immune milieu in the ovary, and particularly how it is affected by female aging, is still lacking. Here, we utilize single-cell RNA sequencing and flow cytometry to construct the complete description of the murine ovarian immune system. We show that the composition of the immune cells undergoes an extensive shift with age towards adaptive immunity. We analyze the effect of aging on gene expression and chemokine and cytokine networks and show an overall decreased expression of inflammatory mediators together with an increased expression of senescent cells recognition receptors. Our results suggest that the fertile female's ovarian immune aging differs from the suggested female post-menopause inflammaging as it copes with the inflammatory stimulations during repeated cycles and the increasing need for clearance of accumulating atretic follicles.


Assuntos
Folículo Ovariano , Ovário , Feminino , Camundongos , Animais , Ovário/metabolismo , Envelhecimento , Imunidade Adaptativa , Sistema Imunitário , Análise de Célula Única
2.
Front Med (Lausanne) ; 9: 950728, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341260

RESUMO

Eosinophilic esophagitis (EoE) is a chronic allergic inflammatory condition of the esophagus associated with elevated esophageal eosinophils. Second only to gastroesophageal reflux disease, EoE is one of the leading causes of chronic refractory dysphagia in adults and children. EoE is a clinicopathologic disorder and the histological portion of the diagnosis requires enumerating the density of esophageal eosinophils in esophageal biopsies, and evaluating additional features such as basal zone hyperplasia is helpful. However, this task requires time-consuming, somewhat subjective manual analysis, thus reducing the ability to process the complex tissue structure and infer its relationship with the patient's clinical status. Previous artificial intelligence (AI) approaches that aimed to improve histology-based diagnosis focused on recapitulating identification and quantification of the area of maximal eosinophil density, the gold standard manual metric for determining EoE disease activity. However, this metric does not account for the distribution of eosinophils or other histological features, over the whole slide image. Here, we developed an artificial intelligence platform that infers local and spatial biomarkers based on semantic segmentation of intact eosinophils and basal zone distributions. Besides the maximal density of eosinophils [referred to as Peak Eosinophil Count (PEC)] and a maximal basal zone fraction, we identify the value of two additional metrics that reflect the distribution of eosinophils and basal zone fractions. This approach enables a decision support system that predicts EoE activity and potentially classifies the histological severity of EoE patients. We utilized a cohort that includes 1,066 biopsy slides from 400 subjects to validate the system's performance and achieved a histological severity classification accuracy of 86.70%, sensitivity of 84.50%, and specificity of 90.09%. Our approach highlights the importance of systematically analyzing the distribution of biopsy features over the entire slide and paves the way toward a personalized decision support system that will assist not only in counting cells but can also potentially improve diagnosis and provide treatment prediction.

3.
PLoS Comput Biol ; 18(10): e1010565, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36191042

RESUMO

Although closely related, bacterial strains from the same species show significant diversity in their growth and death dynamics. Yet, our understanding of the relationship between the kinetic parameters that dictate these dynamics is still lacking. Here, we measured the growth and death dynamics of 11 strains of Escherichia coli originating from different hosts and show that the growth patterns are clustered into three major classes with typical growth rates, maximal fold change, and death rates. To infer the underlying phenotypic parameters that govern the dynamics, we developed a phenomenological mathematical model that accounts not only for growth rate and its dependence on resource availability, but also for death rates and density-dependent growth inhibition. We show that density-dependent growth is essential for capturing the variability in growth dynamics between the strains. Indeed, the main parameter determining the dynamics is the typical density at which they slow down their growth, rather than the maximal growth rate or death rate. Moreover, we show that the phenotypic landscape resides within a two-dimensional plane spanned by resource utilization efficiency, death rate, and density-dependent growth inhibition. In this phenotypic plane, we identify three clusters that correspond to the growth pattern classes. Overall, our results reveal the tradeoffs between growth parameters that constrain bacterial adaptation.


Assuntos
Adaptação Fisiológica , Escherichia coli
4.
Int J Cancer ; 144(12): 3014-3022, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30515799

RESUMO

Pancreatic ductal adenocarcinoma (PDA) remains a deadly disease, affecting about 40,000 individuals in the United States annually. We aimed to characterize the role of RET as a co-driver of pancreas tumorigenesis. To assess the role of RET as a co-driver of PDA, we generated a novel triple mutant transgenic mouse based on the cre-activated p53R172H gene and a constitutively active RET M919T mutant (PRC). Survival analysis was performed using Kaplan-Meier analysis. Study of human PDA specimens and Pdx-1-Cre/KrasG12D /p53R172H (KPC) mice revealed that RET is upregulated during pancreas tumorigenesis, from inception through precursor lesions, to invasive cancer. We demonstrated that activation of RET is capable of inducing invasive pancreatic carcinomas in the background of the P53 inactivation mutation. Compared to KPC mice, PRC animals had distinct phenotypes, including longer latency to tumor progression, longer survival, and the presence of multiple macrometastases. Enhanced activation of the MAPK pathway was observed as early as the PanIN 2 stage. Sequencing of the exonic regions of KRAS in PRC-derived PDA cells revealed no evidence of KRAS mutations. RET can be an essential co-driver of pancreatic tumorigenesis in conjugation with KRAS activity. These data suggest that RET may be a potential target in the treatment of PDA.


Assuntos
Carcinoma Ductal Pancreático/enzimologia , Neoplasias Pancreáticas/enzimologia , Proteínas Proto-Oncogênicas c-ret/metabolismo , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Ductal Pancreático/patologia , Ativação Enzimática , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Regulação para Cima
5.
Oncogene ; 37(17): 2213-2224, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29379162

RESUMO

High grade serous carcinoma (HGSC) is the most common subtype of ovarian cancer and it is now widely accepted that this disease often originates from the fallopian tube epithelium. PAX8 is a fallopian tube lineage marker with an essential role in embryonal female genital tract development. In the adult fallopian tube, PAX8 is expressed in the fallopian tube secretory epithelial cell (FTSEC) and its expression is maintained through the process of FTSEC transformation to HGSC. We now report that PAX8 has a pro-proliferative and anti-apoptotic role in HGSC. The tumor suppressor gene TP53 is mutated in close to 100% of HGSC; in the majority of cases, these are missense mutations that endow the mutant p53 protein with potential gain of function (GOF) oncogenic activities. We show that PAX8 positively regulates the expression of TP53 in HGSC and the pro-proliferative role of PAX8 is mediated by the GOF activity of mutant p53. Surprisingly, mutant p53 transcriptionally activates the expression of p21, which localizes to the cytoplasm of HGSC cells where it plays a non-canonical, pro-proliferative role. Together, our findings illustrate how TP53 mutations in HGSC subvert a normal regulatory pathway into a driver of tumor progression.


Assuntos
Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Cistadenocarcinoma Seroso/patologia , Neoplasias Ovarianas/patologia , Fator de Transcrição PAX8/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Inibidor de Quinase Dependente de Ciclina p21/genética , Cistadenocarcinoma Seroso/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Gradação de Tumores , Neoplasias Ovarianas/genética , Transdução de Sinais/genética , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética
6.
J Biol Chem ; 288(10): 7294-304, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23341463

RESUMO

Mitogen-activated protein kinases (MAPKs) form a kinase tier module in which MAPK, MAP2K, and MAP3K are held by scaffold proteins. The scaffold proteins serve as a protein platform for selective and spatial kinase activation. The precise mechanism by which the scaffold proteins function has not yet been fully explained. WDR62 is a novel scaffold protein of the c-Jun N-terminal kinase (JNK) pathway. Recessive mutations within WDR62 result in severe cerebral cortical malformations. One of the WDR62 mutant proteins found in a patient with microcephaly encodes a C-terminal truncated protein that fails to associate efficiently with JNK and MKK7ß1. The present article shows that the WDR62 C-terminal region harbors a novel dimerization domain composed of a putative loop-helix domain that is necessary and sufficient for WDR62 dimerization and is critical for its scaffolding function. The loop-helix domain is highly conserved between orthologues and is also shared by the JNK scaffold protein, JNKBP1/MAPKBP1. Based on the high sequence conservation of the loop-helix domain, our article shows that MAPKBP1 homodimerizes and heterodimerizes with WDR62. Endogenous WDR62 and MAPKBP1 co-localize to stress granules following arsenite treatment, but not during mitosis. This study proposes another layer of complexity, in which coordinated activation of signaling pathways is mediated by the association between the different JNK scaffold proteins depending on their biological function.


Assuntos
MAP Quinase Quinase 7/química , Proteína Quinase 9 Ativada por Mitógeno/química , Proteínas do Tecido Nervoso/química , Estrutura Secundária de Proteína , Sequência de Aminoácidos , Arsenitos/farmacologia , Sítios de Ligação/genética , Western Blotting , Proteínas de Ciclo Celular , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MAP Quinase Quinase 7/genética , MAP Quinase Quinase 7/metabolismo , Microscopia Confocal , Proteína Quinase 9 Ativada por Mitógeno/genética , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica , Homologia de Sequência de Aminoácidos
7.
Biochem J ; 439(3): 381-90, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21749326

RESUMO

JNK (c-Jun N-terminal kinase) is part of a MAPK (mitogen-activated protein kinase) signalling cascade. Scaffold proteins simultaneously associate with various components of the MAPK signalling pathway and play a crucial role in signal transmission and MAPK regulation. WDR62 (WD repeat domain 62) is a JNK scaffold protein. Recessive mutations within WDR62 result in severe cerebral cortical malformation. In the present study we demonstrate the association of WDR62 with endogenous and overexpressed proteins of both JNK2 and the JNK2-activating kinase MKK7 (MAPK kinase 7). Association of WDR62 with JNK2 and MKK7 occurs via direct protein-protein interactions. We mapped the docking domain of WDR62 responsible for the association with JNK. WDR62 interacts with all JNK isoforms through a D domain motif located at the C-terminus. A WDR62 mutant lacking the putative JNK-binding domain fails to activate and recruit JNK to cellular granules. Furthermore, a synthetic peptide composed of the WDR62 docking domain inhibits JNK2 activity in vitro. WDR62 association with JNK2 requires both the JNK CD and ED domains, and the binding requisite is distinct from that of the previously described JNK2 association with JIP1 (JNK-interacting protein 1). Next, we characterized the association between WDR62 and MKK7. WDR62 associates directly with the MKK7ß1 isoform independently of JNK binding, but fails to interact with MKK7α1. Furthermore, MKK7ß1 recruits a protein phosphatase that dephosphorylates WDR62. Interestingly, a premature termination mutation in WDR62 that results in severe brain developmental defects does not abrogate WDR62 association with either JNK or MKK7. Therefore such mutations represent a loss of WDR62 function independent of JNK signalling.


Assuntos
MAP Quinase Quinase 7/química , Proteína Quinase 9 Ativada por Mitógeno/química , Proteínas do Tecido Nervoso/química , Sequências Repetitivas de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ciclo Celular , Células HEK293 , Células HeLa , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/química , Proteínas Quinases JNK Ativadas por Mitógeno/genética , MAP Quinase Quinase 7/genética , Proteína Quinase 9 Ativada por Mitógeno/genética , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas Associadas à Matriz Nuclear/química , Proteínas Associadas à Matriz Nuclear/genética , Ligação Proteica , Estrutura Terciária de Proteína/genética , Sequências Repetitivas de Aminoácidos/genética , Deleção de Sequência/genética
8.
Mol Biol Cell ; 21(1): 117-30, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19910486

RESUMO

The c-Jun N-terminal kinase (JNK) is part of a mitogen-activated protein kinase (MAPK) signaling cascade. Scaffold proteins simultaneously associate with various components of the MAPK signaling pathway and play a role in signal transmission and regulation. Here we describe the identification of a novel scaffold JNK-binding protein, WDR62, with no sequence homology to any of the known scaffold proteins. WDR62 is a ubiquitously expressed heat-sensitive 175-kDa protein that specifically associates with JNK but not with ERK and p38. Association between WDR62 and JNKs occurs in the absence and after either transient or persistent stimuli. WDR62 potentiates JNK kinase activity; however it inhibits AP-1 transcription through recruitment of JNK to a nonnuclear compartment. HEK-293T cells transfected with WDR62 display cytoplasmic granular localization. Overexpression of stress granule (SG) resident proteins results in the recruitment of endogenous WDR62 and activated JNK to SG. In addition, cell treatment with arsenite results in recruitment of WDR62 to SG and activated JNK to processing bodies (PB). JNK inhibition results in reduced number and size of SG and reduced size of PB. Collectively, we propose that JNK and WDR62 may regulate the dynamic interplay between polysomes SG and PB, thereby mediating mRNA fate after stress.


Assuntos
Grânulos Citoplasmáticos/enzimologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas/metabolismo , Estresse Fisiológico , Animais , Linhagem Celular , Clonagem Molecular , Ativação Enzimática , Imunofluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Camundongos , Modelos Biológicos , Ligação Proteica , Transporte Proteico , Proteínas/química , Proteínas/genética , Fator de Transcrição AP-1/genética , Transcrição Gênica , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA