Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Biomech ; 150: 111490, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36878113

RESUMO

Pelvis and lumbar spine fractures occur in falls, motor vehicle crashes, and military combat events. They are attributed to vertical impact from the pelvis to the spine. Although whole-body cadavers were exposed to this vector and injuries were reported, spinal loads were not determined. While previous studies determined injury metrics such as peak forces using isolated pelvis or spine models, they were not conducted using the combined pelvis-spine columns, thereby not accounting for the interaction between the two body regions. Earlier studies did not develop response corridors. The study objectives were to develop temporal corridors of loads at the pelvis and spine and assess clinical fracture patterns using a human cadaver model. Vertical impact loads were delivered at the pelvic end to twelve unembalmed intact pelvis-spine complexes, and pelvis forces and spinal loads (axial, shear and resultant and bending moments) were obtained. Injuries were classified using clinical assessments from post-test computed tomography scans. Spinal injuries were stable in eight and unstable in four specimens. Pelvis injuries included ring fractures in six and unilateral pelvis in three, sacrum fractures in ten, and two specimens did not sustain any injuries to the pelvis or sacrum complex. Data were grouped based on time to peak velocity, and ± one standard deviation corridors about the mean of the biomechanical metrics were developed. Time-history corridors of loads at the pelvis and spine, hitherto not reported in any study, are valuable to assess the biofidelity of anthropomorphic test devices and assist validating finite element models.


Assuntos
Traumatismos por Explosões , Fraturas da Coluna Vertebral , Traumatismos da Coluna Vertebral , Humanos , Vértebras Lombares , Explosões , Pelve , Cadáver , Fenômenos Biomecânicos/fisiologia
2.
Med Eng Phys ; 59: 81-87, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30064939

RESUMO

Smart implants have the potential to enable personalized care regimens for patients. However, the integration of smart implants into daily clinical practice is limited by the size and cost of available sensing technology. Passive resonant sensors are an attractive alternative to traditional sensing technologies because they obviate the need for on-sensor signal conditioning or telemetry and are substantially simpler, smaller, less expensive, and more robust than other sensing methods. We have developed a novel simple, passive sensing platform that is adaptable to a variety of applications. Sensors consist of only two disconnected parallel Archimedean spiral coils and an intervening solid dielectric layer. When exposed to force or pressure, the resonant frequency of the circuit shifts which can be measured wirelessly. We fabricated prototype pressure sensors and force sensors and compared their performance to a lumped parameter model which predicts sensor behavior. The sensors exhibited a linear response (R2 > 0.91) to dynamic changes in pressure or force with excellent sensitivity. Experimental data were within 13.3% and 6.2% of the values predicted by the model for force and pressure respectively. Results demonstrate that the sensors can be adapted to measure various measurands through a span of sensitivities and ranges by appropriate selection of the intervening layer.


Assuntos
Fenômenos Mecânicos , Pressão , Próteses e Implantes , Tecnologia sem Fio
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 1890-1893, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28268696

RESUMO

We have developed a simple wireless pressure sensor that consists of only three electrically isolated components. Two conductive spirals are separated by a closed cell foam that deforms when exposed to changing pressures. This deformation changes the capacitance and thus the resonant frequency of the sensors. Prototype sensors were submerged and wirelessly interrogated while being exposed to physiologically relevant pressures from 10 to 130 mmHg. Sensors consistently exhibited a sensitivity of 4.35 kHz/mmHg which is sufficient for resolving physiologically relevant pressure changes in vivo. These simple sensors have the potential for in vivo pressure sensing.


Assuntos
Síndromes Compartimentais , Equipamentos e Provisões , Síndromes Compartimentais/diagnóstico , Síndromes Compartimentais/terapia , Humanos
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 1930-1933, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28268705

RESUMO

Passive, LC resonators have the potential to serve as small, robust, low cost, implantable sensors to wirelessly monitor implants following orthopedic surgery. One significant barrier to using LC sensors is the influence on the sensor's resonance of the surrounding conductive high permittivity media in vivo. The surrounding media can detune the resonant frequency of the LC sensor resulting in a bias. To mitigate the effects of the surrounding media, we added a "capping layer" to LC sensors to isolate them from the surrounding media. Several capping materials and thicknesses were tested to determine effectiveness at reducing the sensor's interaction with the surrounding media. Results show that a 1 mm glass capping layer on the outer surfaces of the sensor was sufficient to reduce the effects of the media on sensor signal to less than 1%.


Assuntos
Monitorização Fisiológica , Capacitância Elétrica , Próteses e Implantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA