Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Physiol Plant ; 176(3): e14336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783514

RESUMO

The tiller inhibition (tin) and Reduced height (Rht) genes strongly influence the carbon partitioning and architecture of wheat shoots, but their effects on the energy economy of roots have not been examined in detail. We examined multiple root traits in three sets of near-isogenic wheat lines (NILs) that differ in the tin gene or various dwarfing gene alleles (Rht-B1b, Rht-D1b, Rht-B1c and Rht-B1b + Rht-D1b) to determine their effects on root structure, anatomy and carbon allocation. The tin gene resulted in fewer tillers but more costly roots in an extreme tin phenotype with a Banks genetic background due to increases in root-to-shoot ratio, total root length, and whole root respiration. However, this effect depended on the genetic background as tin caused both smaller shoots and roots in a different genetic background. The semi-dwarf gene Rht-B1b caused few changes to the root structure, whereas Rht-D1b, Rht-B1c and the double dwarf (Rht-B1b + Rht-D1b) decreased the root biomass. Rht-B1c reduced the energy cost of roots by increasing specific root length, increasing the volume of cortical aerenchyma and by reducing root length, number, and biomass without affecting the root-to-shoot ratio. This work informs researchers using tin and Rht genes how to modify root system architecture to suit specific environments.


Assuntos
Fenótipo , Raízes de Plantas , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/fisiologia , Triticum/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Genes de Plantas/genética , Biomassa
2.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445670

RESUMO

Root architecture is key in determining how effective plants are at intercepting and absorbing nutrients and water. Previously, the wheat (Triticum aestivum) cultivars Spica and Maringa were shown to have contrasting root morphologies. These cultivars were crossed to generate an F6:1 population of recombinant inbred lines (RILs) which was genotyped using a 90 K single nucleotide polymorphisms (SNP) chip. A total of 227 recombinant inbred lines (RILs) were grown in soil for 21 days in replicated trials under controlled conditions. At harvest, the plants were scored for seven root traits and two shoot traits. An average of 7.5 quantitative trait loci (QTL) were associated with each trait and, for each of these, physical locations of the flanking markers were identified using the Chinese Spring reference genome. We also compiled a list of genes from wheat and other monocotyledons that have previously been associated with root growth and morphology to determine their physical locations on the Chinese Spring reference genome. This allowed us to determine whether the QTL discovered in our study encompassed genes previously associated with root morphology in wheat or other monocotyledons. Furthermore, it allowed us to establish if the QTL were co-located with the QTL identified from previously published studies. The parental lines together with the genetic markers generated here will enable specific root traits to be introgressed into elite wheat lines. Moreover, the comprehensive list of genes associated with root development, and their physical locations, will be a useful resource for researchers investigating the genetics of root morphology in cereals.


Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Mapeamento Cromossômico , Fenótipo , Marcadores Genéticos , Polimorfismo de Nucleotídeo Único
3.
New Phytol ; 232(1): 5-7, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34216155
4.
Trends Plant Sci ; 25(1): 105-118, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31806535

RESUMO

Root systems determine the water and nutrients for photosynthesis and harvested products, underpinning agricultural productivity. We highlight 11 programs that integrated root traits into germplasm for breeding, relying on phenotyping. Progress was successful but slow. Today's phenotyping technologies will speed up root trait improvement. They combine multiple new alleles in germplasm for target environments, in parallel. Roots and shoots are detected simultaneously and nondestructively, seed to seed measures are automated, and field and laboratory technologies are increasingly linked. Available simulation models can aid all phenotyping decisions. This century will see a shift from single root traits to rhizosphere selections that can be managed dynamically on farms and a shift to phenotype-based improvement to accommodate the dynamic complexity of whole crop systems.


Assuntos
Cruzamento , Raízes de Plantas , Fenótipo , Rizosfera , Sementes
6.
Front Plant Sci ; 8: 282, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28303148

RESUMO

Ensuring future food security for a growing population while climate change and urban sprawl put pressure on agricultural land will require sustainable intensification of current farming practices. For the crop breeder this means producing higher crop yields with less resources due to greater environmental stresses. While easy gains in crop yield have been made mostly "above ground," little progress has been made "below ground"; and yet it is these root system traits that can improve productivity and resistance to drought stress. Wheat pre-breeders use soil coring and core-break counts to phenotype root architecture traits, with data collected on rooting density for hundreds of genotypes in small increments of depth. The measured densities are both large datasets and highly variable even within the same genotype, hence, any rigorous, comprehensive statistical analysis of such complex field data would be technically challenging. Traditionally, most attributes of the field data are therefore discarded in favor of simple numerical summary descriptors which retain much of the high variability exhibited by the raw data. This poses practical challenges: although plant scientists have established that root traits do drive resource capture in crops, traits that are more randomly (rather than genetically) determined are difficult to breed for. In this paper we develop a hierarchical nonlinear mixed modeling approach that utilizes the complete field data for wheat genotypes to fit, under the Bayesian paradigm, an "idealized" relative intensity function for the root distribution over depth. Our approach was used to determine heritability: how much of the variation between field samples was purely random vs. being mechanistically driven by the plant genetics? Based on the genotypic intensity functions, the overall heritability estimate was 0.62 (95% Bayesian confidence interval was 0.52 to 0.71). Despite root count profiles that were statistically very noisy, our approach led to denoised profiles which exhibited rigorously discernible phenotypic traits. Profile-specific traits could be representative of a genotype, and thus, used as a quantitative tool to associate phenotypic traits with specific genotypes. This would allow breeders to select for whole root system distributions appropriate for sustainable intensification, and inform policy for mitigating crop yield risk and food insecurity.

7.
J Exp Bot ; 67(4): 1033-43, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26826219

RESUMO

Root architecture traits are a target for pre-breeders. Incorporation of root architecture traits into new cultivars requires phenotyping. It is attractive to rapidly and directly phenotype root architecture in the field, avoiding laboratory studies that may not translate to the field. A combination of soil coring with a hydraulic push press and manual core-break counting can directly phenotype root architecture traits of depth and distribution in the field through to grain development, but large teams of people are required and labour costs are high with this method. We developed a portable fluorescence imaging system (BlueBox) to automate root counting in soil cores with image analysis software directly in the field. The lighting system was optimized to produce high-contrast images of roots emerging from soil cores. The correlation of the measurements with the root length density of the soil cores exceeded the correlation achieved by human operator measurements (R (2)=0.68 versus 0.57, respectively). A BlueBox-equipped team processed 4.3 cores/hour/person, compared with 3.7 cores/hour/person for the manual method. The portable, automated in-field root architecture phenotyping system was 16% more labour efficient, 19% more accurate, and 12% cheaper than manual conventional coring, and presents an opportunity to directly phenotype root architecture in the field as part of pre-breeding programs. The platform has wide possibilities to capture more information about root health and other root traits in the field.


Assuntos
Botânica/instrumentação , Botânica/métodos , Processamento de Imagem Assistida por Computador/instrumentação , Raízes de Plantas/crescimento & desenvolvimento , Espectrometria de Fluorescência , Triticum/crescimento & desenvolvimento , Botânica/economia , Processamento de Imagem Assistida por Computador/economia , Fenótipo , Raízes de Plantas/genética , Espectrometria de Fluorescência/economia , Espectrometria de Fluorescência/instrumentação , Triticum/genética
8.
Funct Plant Biol ; 43(2): 173-188, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32480451

RESUMO

Many rainfed wheat production systems are reliant on stored soil water for some or all of their water inputs. Selection and breeding for root traits could result in a yield benefit; however, breeding for root traits has traditionally been avoided due to the difficulty of phenotyping mature root systems, limited understanding of root system development and function, and the strong influence of environmental conditions on the phenotype of the mature root system. This paper outlines an international field selection program for beneficial root traits at maturity using soil coring in India and Australia. In the rainfed areas of India, wheat is sown at the end of the monsoon into hot soils with a quickly receding soil water profile; in season water inputs are minimal. We hypothesised that wheat selected and bred for high yield under these conditions would have deep, vigorous root systems, allowing them to access and utilise the stored soil water at depth around anthesis and grain-filling when surface layers were dry. The Indian trials resulted in 49 lines being sent to Australia for phenotyping. These lines were ranked against 41 high yielding Australian lines. Variation was observed for deep root traits e.g. in eastern Australia in 2012, maximum depth ranged from 118.8 to 146.3cm. There was significant variation for root traits between sites and years, however, several Indian genotypes were identified that consistently ranked highly across sites and years for deep rooting traits.

9.
Plants (Basel) ; 4(3): 606-43, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27135343

RESUMO

Most field-grown plants are surrounded by microbes, especially from the soil. Some of these, including bacteria, fungi and nematodes, specifically manipulate the growth and development of their plant hosts, primarily for the formation of structures housing the microbes in roots. These developmental processes require the correct localization of the phytohormone auxin, which is involved in the control of cell division, cell enlargement, organ development and defense, and is thus a likely target for microbes that infect and invade plants. Some microbes have the ability to directly synthesize auxin. Others produce specific signals that indirectly alter the accumulation of auxin in the plant by altering auxin transport. This review highlights root-microbe interactions in which auxin transport is known to be targeted by symbionts and parasites to manipulate the development of their host root system. We include case studies for parasitic root-nematode interactions, mycorrhizal symbioses as well as nitrogen fixing symbioses in actinorhizal and legume hosts. The mechanisms to achieve auxin transport control that have been studied in model organisms include the induction of plant flavonoids that indirectly alter auxin transport and the direct targeting of auxin transporters by nematode effectors. In most cases, detailed mechanisms of auxin transport control remain unknown.

10.
New Phytol ; 202(2): 582-593, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24443934

RESUMO

LONELY GUY (LOG) genes encode cytokinin riboside 5'-monophosphate phosphoribohydrolases and are directly involved in the activation of cytokinins. To assess whether LOG proteins affect the influence of cytokinin on nodulation, we studied two LOG genes of Medicago truncatula. Expression analysis showed that MtLOG1 and MtLOG2 were upregulated during nodulation in a CRE1-dependent manner. Expression was mainly localized in the dividing cells of the nodule primordium. In addition, RNA interference revealed that MtLOG1 is involved in nodule development and that the gene plays a negative role in lateral root development. Ectopic expression of MtLOG1 resulted in a change in cytokinin homeostasis, triggered cytokinin-inducible genes and produced roots with enlarged vascular tissues and shortened primary roots. In addition, those 35S:LOG1 roots also displayed fewer nodules than the wild-type. This inhibition in nodule formation was local, independent of the SUPER NUMERIC NODULES gene, but coincided with an upregulation of the MtCLE13 gene, encoding a CLAVATA3/EMBRYO SURROUNDING REGION peptide. In conclusion, we demonstrate that in M. truncatula LOG proteins might be implicated in nodule primordium development and lateral root formation.


Assuntos
Citocininas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Medicago truncatula/genética , Proteínas de Plantas/genética , Nodulação/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Aminoidrolases , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Medicago truncatula/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Regulação para Cima
11.
Plant J ; 65(4): 622-33, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21244535

RESUMO

Phytohormonal interactions are essential to regulate plant organogenesis. In response to the presence of signals from symbiotic bacteria, the Nod factors, legume roots generate a new organ: the nitrogen-fixing nodule. Analysis of mutants in the Medicago truncatula CRE1 cytokinin receptor and of the MtRR4 cytokinin primary response gene expression pattern revealed that cytokinin acts in initial cortical cell divisions and later in the transition between meristematic and differentiation zones of the mature nodule. MtCRE1 signaling is required for activation of the downstream nodulation-related transcription factors MtERN1, MtNSP2 and MtNIN, as well as to regulate expression and accumulation of PIN auxin efflux carriers. Whereas the MtCRE1 pathway is required to allow the inhibition of polar auxin transport in response to rhizobia, nodulation is still negatively regulated by the MtEIN2/SICKLE-dependent ethylene pathway in cre1 mutants. Hence, MtCRE1 signaling acts as a regulatory knob, integrating positive plant and bacterial cues to control legume nodule organogenesis.


Assuntos
Citocininas/metabolismo , Medicago truncatula/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Nodulação/genética , Receptores de Superfície Celular/metabolismo , Simbiose , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Dados de Sequência Molecular , Mutação , Proteínas de Plantas/genética , RNA de Plantas/genética , Receptores de Superfície Celular/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transformação Genética
12.
New Phytol ; 183(1): 167-179, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19402878

RESUMO

* In this study, we tested whether the organogenesis of symbiotic root nodules, lateral roots and root galls induced by parasitic root knot nematodes (Meloidogyne javanica) was regulated by the presence of flavonoids in the roots of Medicago truncatula. Flavonoids accumulate in all three types of root organ, and have been hypothesized previously to be required for secondary root organogenesis because of their potential role as auxin transport regulators. * Using RNA interference to silence the flavonoid biosynthetic pathway in M. truncatula, we generated transformed flavonoid-deficient hairy roots which were used to study flavonoid accumulation, cell division and organogenesis of nodules, lateral roots and root galls. * Flavonoid-deficient roots did not form nodules, as demonstrated previously, but showed altered root growth in response to rhizobia. By contrast, flavonoid-deficient roots showed no difference in the number of lateral roots and root galls. Galls on flavonoid-deficient roots formed normal giant cells, but were shorter, and were characterized by reduced numbers of dividing pericycle cells. * We rejected the hypothesis that flavonoids are required as general regulators of the organogenesis of secondary root organs, but flavonoids appear to be necessary for nodulation. Possible reasons for this difference in the requirement for flavonoids are discussed.


Assuntos
Flavonoides/metabolismo , Medicago truncatula/crescimento & desenvolvimento , Doenças das Plantas/parasitologia , Nodulação/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Tumores de Planta/parasitologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Aciltransferases/metabolismo , Animais , Medicago truncatula/metabolismo , Medicago truncatula/fisiologia , Nematoides , Interferência de RNA , Sinorhizobium meliloti
13.
Plant Cell ; 18(7): 1617-29, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16751348

RESUMO

Legumes form symbioses with rhizobia, which initiate the development of a new plant organ, the nodule. Flavonoids have long been hypothesized to regulate nodule development through their action as auxin transport inhibitors, but genetic proof has been missing. To test this hypothesis, we used RNA interference to silence chalcone synthase (CHS), the enzyme that catalyzes the first committed step of the flavonoid pathway, in Medicago truncatula. Agrobacterium rhizogenes transformation was used to create hairy roots that showed strongly reduced CHS transcript levels and reduced levels of flavonoids in silenced roots. Flavonoid-deficient roots were unable to initiate nodules, even though normal root hair curling was observed. Nodule formation and flavonoid accumulation could be rescued by supplementation of plants with the precursor flavonoids naringenin and liquiritigenin. The flavonoid-deficient roots showed increased auxin transport compared with control roots. Inoculation with rhizobia reduced auxin transport in control roots after 24 h, similar to the action of the auxin transport inhibitor N-(1-naphthyl)phthalamic acid (NPA). Rhizobia were unable to reduce auxin transport in flavonoid-deficient roots, even though NPA inhibited auxin transport. Our results present genetic evidence that root flavonoids are necessary for nodule initiation in M. truncatula and suggest that they act as auxin transport regulators.


Assuntos
Flavonoides/metabolismo , Ácidos Indolacéticos/metabolismo , Medicago truncatula , Raízes de Plantas , Nódulos Radiculares de Plantas/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Inativação Gênica , Medicago truncatula/anatomia & histologia , Medicago truncatula/metabolismo , Dados de Sequência Molecular , Fenótipo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Rhizobium/genética , Rhizobium/metabolismo , Nódulos Radiculares de Plantas/anatomia & histologia , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA