Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pan Afr Med J ; 33(Suppl 2): 8, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31404295

RESUMO

INTRODUCTION: Following a declaration by the World Health Organization that Liberia had successfully interrupted Ebola virus transmission on May 9th, 2015; the country entered a period of enhanced surveillance. The number of cases had significantly reduced prior to the declaration, leading to closure of eight out of eleven Ebola testing laboratories. Enhanced surveillance led to an abrupt increase in demand for laboratory services. We report interventions, achievements, lessons learned and recommendations drawn from enhancing laboratory capacity. METHODS: Using archived data, we reported before and after interventions that aimed at increasing laboratory capacity. Laboratory capacity was defined by number of laboratories with Ebola Virus Disease (EVD) testing capacity, number of competent staff, number of specimens tested, specimen backlog, daily and surge testing capacity, and turnaround time. Using Stata 14 (Stata Corporation, College Station, TX, USA), medians and trends were reported for all continuous variables. RESULTS: Between May and December 2015, interventions including recruitment and training of eight staff, establishment of one EVD laboratory facility, implementation of ten Ebola GeneXpert diagnostic platforms, and establishment of working shifts yielded an 8-fold increase in number of specimens tested, a reduction in specimens backlog to zero, and restoration of turn-around time to 24 hours. This enabled a more efficient surveillance system that facilitated timely detection and containment of two EVD clusters observed thereafter. CONCLUSION: Effective enhancement of laboratory services during high demand periods requires a combination of context-specific interventions. Building and ensuring sustainability of local capacity is an integral part of effective surveillance and disease outbreak response efforts.


Assuntos
Fortalecimento Institucional , Surtos de Doenças/prevenção & controle , Doença pelo Vírus Ebola/epidemiologia , Laboratórios/organização & administração , Técnicas de Laboratório Clínico , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Libéria/epidemiologia
2.
PLoS Negl Trop Dis ; 12(1): e0006135, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29304039

RESUMO

The 2014-16 Ebola Virus Disease (EVD) outbreak in West Africa highlighted the necessity for readily available, accurate and rapid diagnostics. The magnitude of the outbreak and the re-emergence of clusters of EVD cases following the declaration of interrupted transmission in Liberia, reinforced the need for sustained diagnostics to support surveillance and emergency preparedness. We describe implementation of the Xpert Ebola Assay, a rapid molecular diagnostic test run on the GeneXpert platform, at a mobile laboratory in Liberia and the subsequent impact on EVD outbreak response, case management and laboratory system strengthening. During the period of operation, site coordination, management and operational capacity was supported through a successful collaboration between Ministry of Health (MoH), World Health Organization (WHO) and international partners. A team of Liberian laboratory technicians were trained to conduct EVD diagnostics and the laboratory had capacity to test 64-100 blood specimens per day. Establishment of the laboratory significantly increased the daily testing capacity for EVD in Liberia, from 180 to 250 specimens at a time when the effectiveness of the surveillance system was threatened by insufficient diagnostic capacity. During the 18 months of operation, the laboratory tested a total of 9,063 blood specimens, including 21 EVD positives from six confirmed cases during two outbreaks. Following clearance of the significant backlog of untested EVD specimens in November 2015, a new cluster of EVD cases was detected at the laboratory. Collaboration between surveillance and laboratory coordination teams during this and a later outbreak in March 2016, facilitated timely and targeted response interventions. Specimens taken from cases during both outbreaks were analysed at the laboratory with results informing clinical management of patients and discharge decisions. The GeneXpert platform is easy to use, has relatively low running costs and can be integrated into other national diagnostic algorithms. The technology has on average a 2-hour sample-to-result time and allows for single specimen testing to overcome potential delays of batching. This model of a mobile laboratory equipped with Xpert Ebola test, staffed by local laboratory technicians, could serve to strengthen outbreak preparedness and response for future outbreaks of EVD in Liberia and the region.


Assuntos
Surtos de Doenças/prevenção & controle , Monitoramento Epidemiológico , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/epidemiologia , Unidades Móveis de Saúde , Administração de Caso , Ebolavirus/isolamento & purificação , Doença pelo Vírus Ebola/virologia , Humanos , Libéria/epidemiologia
4.
Lancet Glob Health ; 4(10): e736-43, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27596037

RESUMO

BACKGROUND: Ebola virus has been detected in semen of Ebola virus disease survivors after recovery. Liberia's Men's Health Screening Program (MHSP) offers Ebola virus disease survivors semen testing for Ebola virus. We present preliminary results and behavioural outcomes from the first national semen testing programme for Ebola virus. METHODS: The MHSP operates out of three locations in Liberia: Redemption Hospital in Montserrado County, Phebe Hospital in Bong County, and Tellewoyan Hospital in Lofa County. Men aged 15 years and older who had an Ebola treatment unit discharge certificate are eligible for inclusion. Participants' semen samples were tested for Ebola virus RNA by real-time RT-PCR and participants received counselling on safe sexual practices. Participants graduated after receiving two consecutive negative semen tests. Counsellors collected information on sociodemographics and sexual behaviours using questionnaires administered at enrolment, follow up, and graduation visits. Because the programme is ongoing, data analysis was restricted to data obtained from July 7, 2015, to May 6, 2016. FINDINGS: As of May 6, 2016, 466 Ebola virus disease survivors had enrolled in the programme; real-time RT-PCR results were available from 429 participants. 38 participants (9%) produced at least one semen specimen that tested positive for Ebola virus RNA. Of these, 24 (63%) provided semen specimens that tested positive 12 months or longer after Ebola virus disease recovery. The longest interval between discharge from an Ebola treatment unit and collection of a positive semen sample was 565 days. Among participants who enrolled and provided specimens more than 90 days since their Ebola treatment unit discharge, men older than 40 years were more likely to have a semen sample test positive than were men aged 40 years or younger (p=0·0004). 84 (74%) of 113 participants who reported not using a condom at enrolment reported using condoms at their first follow-up visit (p<0·0001). 176 (46%) of 385 participants who reported being sexually active at enrolment reported abstinence at their follow-up visit (p<0·0001). INTERPRETATION: Duration of detection of Ebola virus RNA by real-time RT-PCR varies by individual and might be associated with age. By combining behavioural counselling and laboratory testing, the Men's Health Screening Program helps male Ebola virus disease survivors understand their individual risk and take appropriate measures to protect their sexual partners. FUNDING: World Health Organization and the US Centers for Disease Control and Prevention.


Assuntos
Aconselhamento , Ebolavirus , Doença pelo Vírus Ebola/prevenção & controle , RNA Viral/análise , Sêmen/virologia , Comportamento Sexual , Adulto , Portador Sadio , Preservativos , Surtos de Doenças , Ebolavirus/genética , Doença pelo Vírus Ebola/transmissão , Doença pelo Vírus Ebola/virologia , Hospitais , Humanos , Libéria , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Sobreviventes
5.
MMWR Morb Mortal Wkly Rep ; 65(36): 963-6, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27632552

RESUMO

According to World Health Organization (WHO) data, the Ebola virus disease (Ebola) outbreak that began in West Africa in 2014 has resulted in 28,603 cases and 11,301 deaths (1). In March 2015, epidemiologic investigation and genetic sequencing in Liberia implicated sexual transmission from a male Ebola survivor, with Ebola virus detected by reverse transcription-polymerase chain reaction (RT-PCR) 199 days after symptom onset (2,3), far exceeding the 101 days reported from an earlier Ebola outbreak (4). In response, WHO released interim guidelines recommending that all male survivors, in addition to receiving condoms and sexual risk reduction counseling at discharge from an Ebola treatment unit (ETU), be offered semen testing for Ebola virus RNA by RT-PCR 3 months after disease onset, and every month thereafter until two consecutive semen specimens collected at least 1 week apart test negative for Ebola virus RNA (5). Male Ebola survivors should also receive counseling to promote safe sexual practices until their semen twice tests negative. When these recommendations were released, testing of semen was not widely available in Liberia. Challenges in establishing and operating the first nationwide semen testing and counseling program for male Ebola survivors included securing sufficient resources for the program, managing a public health semen testing program in the context of ongoing research studies that were also collecting and screening semen, identification of adequate numbers of trained counselors and appropriate health communication messages for the program, overcoming Ebola survivor-associated stigma, identification and recruitment of male Ebola survivors, and operation of mobile teams.


Assuntos
Aconselhamento/organização & administração , Surtos de Doenças/prevenção & controle , Doença pelo Vírus Ebola/prevenção & controle , Programas de Rastreamento/organização & administração , Sobreviventes , Ebolavirus/isolamento & purificação , Doença pelo Vírus Ebola/epidemiologia , Humanos , Libéria/epidemiologia , Masculino , Desenvolvimento de Programas , Sêmen/virologia , Sobreviventes/estatística & dados numéricos
6.
Afr J Lab Med ; 5(3): 508, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28879142

RESUMO

Prior to the Ebola virus disease outbreak in Liberia, the laboratory system was duplicative, fragmented and minimally coordinated. The National Reference Laboratory was conceptualised to address the existing challenges by promoting the implementation of effective and sustainable laboratory services in Liberia. However, in a resource-limited environment such as Liberia, progress regarding the rebuilding of the health system can be relatively slow, while efforts to sustain the transient gains remain a key challenge for the Ministry of Health. In this paper, we describe the pre-Ebola virus disease laboratory system in Liberia and its prevailing efforts to address future emerging infectious diseases, as well as current Infectious diseases, all of which are exacerbated by poverty. We conclude that laboratory and diagnostic services in Liberia have encountered numerous challenges regarding its efforts to strengthen the healthcare delivery system. These challenges include limited trained human resource capacity, inadequate infrastructure, and a lack of coordination. As with most countries in sub-Saharan Africa, when comparing urban and rural settings, diagnostic and clinical services are generally skewed toward urban health facilities and private, faith-based health facilities. We recommend that structured policy be directed at these challenges for national institutions to develop guidelines to improve, strengthen and sustain diagnostic and curative laboratory services to effectively address current infectious diseases and prepare for future emerging and re-emerging infectious diseases.

7.
Afr J Lab Med ; 5(3): 509, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28879143

RESUMO

The laboratory system in Liberia has generally been fragmented and uncoordinated. Accordingly, the country's Ministry of Health established the National Reference Laboratory to strengthen and sustain laboratory services. However, diagnostic testing services were often limited to clinical tests performed in health facilities, with the functionality of the National Reference Laboratory restricted to performing testing services for a limited number of epidemic-prone diseases. The lack of testing capacity in-country for Lassa fever and other haemorrhagic fevers affected the response of the country's health system during the onset of the Ebola virus disease (EVD) outbreak. Based on the experiences of the EVD outbreak, efforts were initiated to strengthen the laboratory system and infrastructure, enhance human resource capacity, and invest in diagnostic services and public health surveillance to inform admittance, treatment, and discharge decisions. In this article, we briefly describe the pre-EVD laboratory capability in Liberia, and extensively explore the post-EVD strengthening initiatives to enhance capacity, mobilise resources and coordinate disaster response with international partners to rebuild the laboratory infrastructure in the country. Now that the EVD outbreak has ended, additional initiatives are needed to revise the laboratory strategic and operational plan for post-EVD relevance, promote continual human resource capacity, institute accreditation and validation programmes, and coordinate the investment strategy to strengthen and sustain the preparedness of the laboratory sector to mitigate future emerging and re-emerging infectious diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA