Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
J Biochem ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861406

RESUMO

Chondroitin sulfate (CS) is a linear polysaccharide chain of alternating residues of glucuronic acid (GlcA) and N-acetylgalactosamine (GalNAc), modified with sulfate groups. Based on the structure, CS chains bind to bioactive molecules specifically and regulate their functions. For example, CS whose GalNAc is sulfated at the C4 position, termed CSA, and CS whose GalNAc is sulfated at both C4 and C6 positions, termed CSE, bind to a malaria protein VAR2CSA and receptor type of protein tyrosine phosphatase sigma (RPTPσ), respectively in a specific manner. Here, we modified CSA and CSE chains with phosphatidylethanolamine (PE) at a reducing end, attached them to liposomes containing phospholipids, and generated CSA- and CSE-liposomes. The CS-PE was incorporated into the liposome particles efficiently. Inhibition ELISA revealed specific interaction of CSA and CSE with recombinant VAR2CSA and RPTPσ, respectively, more efficiently than CS chains alone. Furthermore, CSE-liposome was specifically incorporated into RPTPσ-expressing HEK293T cells. These results indicate CS-liposome as a novel and efficient drug delivery system, especially for CS-binding molecules.

2.
Biochem Biophys Res Commun ; 727: 150309, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38936224

RESUMO

Versican is a large chondroitin sulfate proteoglycan in the extracellular matrix. It plays a pivotal role in the formation of the provisional matrix. S100a4, previously known as fibroblast-specific protein, functions as a calcium channel-binding protein. To investigate the role of versican expressed in fibroblasts, we generated conditional knockout mice in which versican expression is deleted in cells expressing S100a4. We found that S100a4 is expressed in adipose tissues, and these mice exhibit obesity under a normal diet, which becomes apparent as early as five months. The white adipose tissues of these mice exhibited decreased expression levels of S100a4 and versican and hypertrophy of adipocytes. qRT-PCR showed a reduced level of UCP1 in their white adipose tissues, indicating that the basic energy metabolism is diminished. These results suggest that versican in adipose tissues maintains the homeostasis of adipose tissues and regulates energy metabolism.

3.
Commun Biol ; 7(1): 736, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890483

RESUMO

Organ fibrosis causes collagen fiber overgrowth and impairs organ function. Cardiac fibrosis after myocardial infarction impairs cardiac function significantly, pulmonary fibrosis reduces gas exchange efficiency, and liver fibrosis disturbs the natural function of the liver. Its development is associated with the differentiation of fibroblasts into myofibroblasts and increased collagen synthesis. Fibrosis has organ specificity, defined by the heterogeneity of fibroblasts. Although this heterogeneity is established during embryonic development, it has not been defined yet. Fibroblastic differentiation of induced pluripotent stem cells (iPSCs) recapitulates the process by which fibroblasts acquire diversity. Here, we differentiated iPSCs into cardiac, hepatic, and dermal fibroblasts and analyzed their properties using single-cell RNA sequencing. We observed characteristic subpopulations with different ratios in each organ-type fibroblast group, which contained both resting and distinct ACTA2+ myofibroblasts. These findings provide crucial information on the ontogeny-based heterogeneity of fibroblasts, leading to the development of therapeutic strategies to control fibrosis.


Assuntos
Diferenciação Celular , Fibroblastos , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/citologia , Células Cultivadas , Análise de Célula Única , Fibrose
4.
Stem Cell Res Ther ; 15(1): 17, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38229184

RESUMO

BACKGROUND: Application of pulp regenerative cell therapy for mature teeth with periapical lesions is a critical clinical challenge. The bacterial infection in inaccessible location within the root canal system and in the periapical lesions could cause resistance and impediment, leading to limitations in successful therapy. Thus, the aim of this study was to examine the effect of residual bacteria on the outcome of pulp regeneration in mature teeth with apical periodontitis in dogs. METHODS: Periapical lesions were induced in 32 root canals of 4 dogs in two different models in severities, model A and model B. Model A (moderate infection): the canal exposed to the oral cavity for 2 weeks and then closed for 2 weeks. Model B (severe infection): the canal exposed to the oral cavity for 2 months and then closed for 5 months. All root canals were irrigated with 6% sodium hypochlorite, and 3% EDTA and further with 0.015% levofloxacin-containing nanobubbles, which was also used as an intracanal medicament. The aseptic conditions were examined by bacterial anaerobic culture and/or PCR analyses. The root canal treatment was repeated several times, and allogeneic dental pulp stem cells were transplanted into the root canals. The radiographic evaluation of periapical lesions was performed by cone-beam computed tomography before the first treatment, just after cell transplantation, and after 2 months and 6 months in both model A, model B, respectively. The animals were then sacrificed and the jaw blocks were harvested for histological and histobacteriological evaluations of pulp regeneration and periapical tissue healing. Furthermore, the DiI-labelled DPSCs were transplanted into the root canals after complete disinfection (n = 4) or without root canal treatment (n = 4) in the apical periodontitis model (model A) in one dog, and cell localization was compared 72 h after transplantation. RESULTS: In 8 out of 12 canals from model A, and 10 out of 15 canals from model B, pulp regeneration with good vascularization, innervation, and a significant reduction in the radiolucent area of the periapical lesions were observed. However, in the other 4 canals and 5 canals from model A and model B, respectively, no pulp tissue was regenerated, and inflammation in the periapical tissue, and external resorption or healed external resorption were detected. The presence of residual bacteria in the periapical tissues and severe inflammation were significantly associated with inhibition of regenerated pulp tissue in these 9 unsuccessful canals (P < 0.05, each) (OR = 0.075, each) analyzed by multiple logistic regression analysis. For cellular kinetics, transplanted cells remained in the disinfected root canals, while they were not detected in the infected root canals, suggesting their migration through the apical foramen under the influence of inflammation. CONCLUSIONS: A true pulp-dentin complex was regenerated in the root canal by the pulp regenerative therapy in mature teeth with apical lesions. The successful pulp regeneration was negatively associated both with residual bacteria and inflammation in the periapical tissue.


Assuntos
Periodontite Periapical , Materiais Restauradores do Canal Radicular , Animais , Cães , Polpa Dentária/patologia , Desinfecção , Materiais Restauradores do Canal Radicular/uso terapêutico , Regeneração , Periodontite Periapical/tratamento farmacológico , Periodontite Periapical/patologia , Bactérias , Inflamação , Terapia Baseada em Transplante de Células e Tecidos
5.
Matrix Biol ; 115: 16-31, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423736

RESUMO

The extracellular matrix (ECM) in the endometrium plays a crucial role in mammalian pregnancy. We have shown that versican secreted from the endometrial epithelium promotes embryo implantation. Versican is a proteoglycan, a major player in the provisional matrix, and versikine, its N-terminal fragment cleaved by ADAMTS proteinases, serves as a bioactive molecule. Here, since versican expression in the placenta was dynamically altered in humans and mice, we investigated the role of versican in pregnancy using uterine-specific Vcan deletion mice (uKO mice) and ADAMTS-resistant versican expressing mice (V1R mice). uKO mice exhibited insufficient spiral artery dilation, followed by fetal growth restriction and maternal hypertension. Further analysis revealed impaired proliferation of tissue-resident natural killer cells required for spiral artery dilation. V1R mice showed the same results as the control, eliminating the involvement of versikine. Our results provide a new concept that versican, one factor of ECM, contributes to placentation and following fetal growth.


Assuntos
Útero , Versicanas , Gravidez , Humanos , Feminino , Camundongos , Animais , Versicanas/genética , Versicanas/metabolismo , Dilatação , Útero/metabolismo , Desenvolvimento Fetal , Artérias/metabolismo , Mamíferos/metabolismo
6.
Stem Cell Res Ther ; 13(1): 439, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056397

RESUMO

BACKGROUND: Clinical studies have demonstrated that dental pulp stem cells isolated from permanent teeth (PT-DPSCs) are safe and efficacious for complete pulp regeneration in mature pulpectomized permanent teeth with complete apical closure. Moreover, dental pulp stem cells from deciduous teeth (DT-DPSCs) have also been shown to be useful for pulp regenerative cell therapy of injured immature permanent teeth. However, direct comparisons of the pulp regenerative potential of DT-DPSCs and PT-DPSCs from the same individual have not been performed. This study aimed to compare the differences in stem cell properties and pulp regenerative potential of DT-DPSCs and PT-DPSCs of identical origin. METHODS: DT-DPSCs and PT-DPSCs were isolated from the same individual dogs at 4 months and 9 months of age, respectively. The expression of cell surface antigen markers, proliferation and migration activities, and gene expression of stem cell markers, angiogenic/neurotrophic factors and senescence markers were compared. The effects of conditioned medium (CM) derived from these cells on cellular proliferation, migration, angiogenesis, neurite outgrowth and immunosuppression were also compared. Autologous transplantation of DT-DPSCs or PT-DPSCs together with G-CSF was performed to treat pulpectomized teeth in individual dogs. The vascularization and reinnervation of the regenerated pulp tissues were qualitatively and quantitatively compared between groups by histomorphometric analyses. RESULTS: The rates of positive CXCR4 and G-CSFR expression in DT-DPSCs were significantly higher than those in PT-DPSCs. DT-DPSCs migrated at a higher rate with/without G-CSF and exhibited increased expression of the stem cell markers Oct3/4 and CXCR4 and the angiogenic factor VEGF and decreased expression of the senescence marker p16 than PT-DPSCs. DT-DPSC-derived CM promoted increased cell proliferation, migration with G-CSF, and angiogenesis compared with PT-DPSC-derived CM; however, no difference was observed in neurite outgrowth or immunosuppression. The regenerated pulp tissues in the pulpectomized teeth were quantitatively and qualitatively similar between the DT-DPSCs and PT-DPSCs transplant groups. CONCLUSIONS: These results demonstrated that DT-DPSCs could be a potential clinical alternative to PT-DPSCs for pulp regenerative therapy. DT-DPSCs can be preserved in an individual cell bank and used for potential future pulp regenerative therapy before the supply of an individual's own sound discarded teeth has been exhausted.


Assuntos
Polpa Dentária , Regeneração , Animais , Diferenciação Celular , Proliferação de Células , Meios de Cultivo Condicionados/farmacologia , Cães , Fator Estimulador de Colônias de Granulócitos/farmacologia , Células-Tronco , Dente Decíduo
7.
Nat Cardiovasc Res ; 1(1): 28-44, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35747128

RESUMO

Abnormal hematopoiesis advances cardiovascular disease by generating excess inflammatory leukocytes that attack the arteries and the heart. The bone marrow niche regulates hematopoietic stem cell proliferation and hence the systemic leukocyte pool, but whether cardiovascular disease affects the hematopoietic organ's microvasculature is unknown. Here we show that hypertension, atherosclerosis and myocardial infarction (MI) instigate endothelial dysfunction, leakage, vascular fibrosis and angiogenesis in the bone marrow, altogether leading to overproduction of inflammatory myeloid cells and systemic leukocytosis. Limiting angiogenesis with endothelial deletion of Vegfr2 (encoding vascular endothelial growth factor (VEGF) receptor 2) curbed emergency hematopoiesis after MI. We noted that bone marrow endothelial cells assumed inflammatory transcriptional phenotypes in all examined stages of cardiovascular disease. Endothelial deletion of Il6 or Vcan (encoding versican), genes shown to be highly expressed in mice with atherosclerosis or MI, reduced hematopoiesis and systemic myeloid cell numbers in these conditions. Our findings establish that cardiovascular disease remodels the vascular bone marrow niche, stimulating hematopoiesis and production of inflammatory leukocytes.

8.
BMC Psychiatry ; 22(1): 289, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459119

RESUMO

BACKGROUND: Previous studies using EEG (electroencephalography) as biomarker for dementia have attempted to research, but results have been inconsistent. Most of the studies have extremely small number of samples (average N = 15) and studies with large number of data do not have control group. We identified EEG features that may be biomarkers for dementia with 120 subjects (dementia 10, MCI 33, against control 77). METHODS: We recorded EEG from 120 patients with dementia as they stayed in relaxed state using a single-channel EEG device while conducting real-time noise reduction and compared them to healthy subjects. Differences in EEG between patients and controls, as well as differences in patients' severity, were examined using the ratio of power spectrum at each frequency. RESULTS: In comparing healthy controls and dementia patients, significant power spectrum differences were observed at 3 Hz, 4 Hz, and 10 Hz and higher frequencies. In patient group, differences in the power spectrum were observed between asymptomatic patients and healthy individuals, and between patients of each respective severity level and healthy individuals. CONCLUSIONS: A study with a larger sample size should be conducted to gauge reproducibility, but the results implied the effectiveness of EEG in clinical practice as a biomarker of MCI (mild cognitive impairment) and/or dementia.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Demência , Biomarcadores , Estudos de Casos e Controles , Disfunção Cognitiva/diagnóstico , Eletroencefalografia/métodos , Humanos , Reprodutibilidade dos Testes
9.
Am J Physiol Cell Physiol ; 322(5): C967-C976, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35385326

RESUMO

Aggrecan (Acan) and versican (Vcan) are large chondroitin sulfate proteoglycans of the extracellular matrix. They share the same structural domains at both N- and C-termini. The N-terminal G1 domain binds hyaluronan (HA), forms an HA-rich matrix, and regulates HA-mediated signaling. The C-terminal G3 domain binds other extracellular matrix molecules and forms a supramolecular structure that stores transforming growth factor ß (TGFß) and bone morphogenetic proteins (BMPs) and regulates their signaling. EGF-like motifs in the G3 domain may directly act like an EGF ligand. Both Acan and Vcan are present in cartilage, intervertebral disc, brain, heart, and aorta. Their localizations are essentially reciprocal. This review describes their structural domains, expression patterns and functions, and regulation of their expression.


Assuntos
Proteínas da Matriz Extracelular , Versicanas , Agrecanas/genética , Fator de Crescimento Epidérmico/química , Proteínas da Matriz Extracelular/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Lectinas Tipo C , Irmãos , Versicanas/genética , Versicanas/metabolismo
10.
Matrix Biol ; 107: 59-76, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35176450

RESUMO

Versican is a large chondroitin sulfate/dermatan sulfate proteoglycan that plays a key role in the formation of the provisional matrix. Here, we generated dextran sulfate sodium-induced colitis in knockin-mice, R/R, expressing ADAMTS-resistant versican, and investigated the impact of accumulating versican and its turnover in the inflammatory colon mucosa. Histologically, R/R colon showed decreased levels of tissue destruction and an increased number of myofibroblasts and macrophages. Characterization of inflammatory cells revealed an increase in F4/80+ macrophages in R/R colon, compared with wildtype, without a clear shift between M1 and M2 populations. Intestinal stroma exhibited a higher number of myofibroblasts in R/R, suggesting increased levels of tissue regeneration. Coculture of macrophages and stromal fibroblasts obtained from inflammatory colon showed that wild-type macrophages inhibited myofibroblastic differentiation of R/R fibroblasts but not wild-type. This inhibitory effect was due to an increased level of versikine, a cleaved fragment of versican by ADAMTS proteinases. Taken together, our results demonstrate versikine as the direct regulator that inhibits repair of inflamed tissue.


Assuntos
Colite , Versicanas , Animais , Colite/induzido quimicamente , Colite/genética , Fibroblastos , Camundongos , Versicanas/genética , Cicatrização
11.
Stem Cell Res Ther ; 12(1): 302, 2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34051821

RESUMO

BACKGROUND: Dental pulp stem cells (DPSCs) have been developed as a potential source of mesenchymal stem cells (MSCs) for regeneration of dental pulp and other tissues. However, further strategies to isolate highly functional DPSCs beyond the colony-forming methods are required. We have demonstrated the safety and efficacy of DPSCs isolated by G-CSF-induced mobilization and cultured under normoxia (mobilized DPSCs, MDPSCs) for pulp regeneration. The device for isolation of MDPSCs, however, is not cost-effective and requires a prolonged cell culture period. It is well known that MSCs cultured under hypoxic-preconditions improved MSC proliferation activity and stemness. Therefore, in this investigation, we attempted to improve the clinical utility of DPSCs by hypoxia-preconditioned DPSCs (hpDPSCs) compared with MDPSCs to improve the potential clinical utility for pulp regeneration in endodontic dentistry. METHODS: Colony-forming DPSCs were isolated and preconditioned with hypoxia in a stable closed cultured system and compared with MDPSCs isolated from the individual dog teeth. We examined the proliferation rate, migration potential, anti-apoptotic activity, and gene expression of the stem cell markers and angiogenic/neurotrophic factors. Trophic effects of the conditioned medium (CM) were also evaluated. In addition, the expression of immunomodulatory molecules upon stimulation with IFN-γ was investigated. The pulp regenerative potential and transplantation safety of hpDPSCs were further assessed in pulpectomized teeth in dogs by histological and immunohistochemical analyses and by chemistry of the blood and urine tests. RESULTS: hpDPSCs demonstrated higher proliferation rate and expression of a major regulator of oxygen homeostasis, HIF-1α, and a stem cell marker, CXCR-4. The direct migratory activity of hpDPSCs in response to G-CSF was significantly higher than MDPSCs. The CM of hpDPSCs stimulated neurite extension. However, there were no changes in angiogenic, migration, and anti-apoptotic activities compared with the CM of MDPSCs. The expression of immunomodulatory gene, PTGE was significantly upregulated by IFN gamma in hpDPSCs compared with MDPSCs. However, no difference in nitric oxide was observed. The regenerated pulp tissue was quantitatively and qualitatively similar in hpDPSC transplants compared with MDPSC transplants in dog teeth. There was no evidence of toxicity or adverse events of the hpDPSC transplantation. CONCLUSIONS: These results demonstrated that the efficacy of hpDPSCs for pulp regeneration was identical, although hpDPSCs improved stem cell properties compared to MDPSCs, suggesting their potential clinical utility for pulp regeneration.


Assuntos
Polpa Dentária , Regeneração , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Hipóxia , Células-Tronco
12.
PLoS One ; 16(4): e0250366, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33886644

RESUMO

Versican is a large proteoglycan in the extracellular matrix. During embryonic stages, it plays a crucial role in the development of cartilage, heart, and dermis. Previously, we reported that Prx1-Vcan conditional knockout mice, lacking Vcan expression in mesenchymal condensation areas of the limb bud, show the impaired joint formation and delayed cartilage development. Here, we investigated their phenotype in adults and found that they develop swelling of the knee joint. Histologically, their newborn joint exhibited impaired formation of both anterior and posterior cruciate ligaments. Immunostaining revealed a decrease in scleraxis-positive cells in both articular cartilage and ligament of Prx1-Vcan knee joint, spotty patterns of type I collagen, and the presence of type II collagen concomitant with the absence of versican expression. These results suggest that versican expression during the perinatal period is required for cruciate ligaments' formation and that its depletion affects joint function in later ages.


Assuntos
Ligamento Cruzado Anterior/crescimento & desenvolvimento , Ligamento Cruzado Anterior/metabolismo , Articulação do Joelho/crescimento & desenvolvimento , Articulação do Joelho/metabolismo , Ligamento Cruzado Posterior/crescimento & desenvolvimento , Ligamento Cruzado Posterior/metabolismo , Versicanas/deficiência , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cartilagem Articular/crescimento & desenvolvimento , Cartilagem Articular/metabolismo , Condrogênese/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo II/metabolismo , Camundongos , Camundongos Knockout , Fenótipo , Versicanas/genética
13.
J Histochem Cytochem ; 68(11): 763-775, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33131383

RESUMO

Versican is a large chondroitin sulfate/dermatan sulfate proteoglycan belonging to the aggrecan/lectican family. In adults, this proteoglycan serves as a structural macromolecule of the extracellular matrix in the brain and large blood vessels. In contrast, versican is transiently expressed at high levels during development and under pathological conditions when the extracellular matrix dramatically changes, including in the inflammation and repair process. There are many reports showing the upregulation of versican in cancer, which correlates with cancer aggressiveness. Versican has four classical splice variants, and all the variants contain G1 and G3 domains at N- and C-termini, respectively. There are two glycosaminoglycan attachment domains CSα and CSß. The largest V0 variant contains both CSα and CSß, V1 contains CSß, V2 contains CSα, and the shortest G3 variant has neither of them. Versican degradation is initiated by cleavage at a site in the CSß domain by ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) proteinases. The N-terminal fragment containing the G1 domain has been reported to exert various biological functions, although its mechanisms of action have not yet been elucidated. In this review, we describe the role of versican in inflammation and cancer and also address the biological function of versikine.


Assuntos
Matriz Extracelular/metabolismo , Neoplasias/metabolismo , Versicanas/metabolismo , Animais , Humanos , Inflamação/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-32923438

RESUMO

There is an age-dependent decline of pulp regeneration, due to the decline of migration, proliferation, and cell survival of resident stem cells. Trypsin is a proteolytic enzyme clinically used for tissue repair. Here, we investigated the effects of trypsin pretreatment of pulpectomized teeth prior to cell transplantation on pulp regeneration in aged dogs. The amount of regenerated pulp was significantly higher in trypsin-pretreated teeth compared to untreated teeth. Trypsin pretreatment increased the number of cells attached to the dentinal wall that differentiated into odontoblast-like cells. The trypsin receptor, PAR2, was higher in vitro expression in the periodontal ligament cells (PDLCs) from aged dogs compared to those from young. The direct effects of trypsin on aged PDLCs were increased expression of genes related to immunomodulation, cell survival, and extracellular matrix degradation. To examine the indirect effects on microenvironment, highly extracted proteins from aged cementum were identified by proteomic analyses. Western blotting demonstrated that significantly increased fibronectin was released by the trypsin treatment of aged cementum compared to young cementum. The aged cementum extract (CE) and dentin extract (DE) by trypsin treatment increased angiogenesis, neurite extension and migration activities as elicited by fibronectin. Furthermore, the DE significantly increased the mRNA expression of immunomodulatory factors and pulp markers in the aged DPSCs. These results demonstrated the effects of trypsin on the microenvironment in addition to the resident cells including PDLCs in the aged teeth. In conclusion, the potential utility of trypsin pretreatment to stimulate pulp regeneration in aged teeth and the underlying mechanisms were demonstrated.

15.
J Exp Med ; 217(10)2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32648916

RESUMO

Cerebral cavernous malformations (CCMs) form following loss of the CCM protein complex in brain endothelial cells due to increased endothelial MEKK3 signaling and KLF2/4 transcription factor expression, but the downstream events that drive lesion formation remain undefined. Recent studies have revealed that CCM lesions expand by incorporating neighboring wild-type endothelial cells, indicative of a cell nonautonomous mechanism. Here we find that endothelial loss of ADAMTS5 reduced CCM formation in the neonatal mouse model. Conversely, endothelial gain of ADAMTS5 conferred early lesion genesis in the absence of increased KLF2/4 expression and synergized with KRIT1 loss of function to create large malformations. Lowering versican expression reduced CCM burden, indicating that versican is the relevant ADAMTS5 substrate and that lesion formation requires proteolysis but not loss of this extracellular matrix protein. These findings identify endothelial secretion of ADAMTS5 and cleavage of versican as downstream mechanisms of CCM pathogenesis and provide a basis for the participation of wild-type endothelial cells in lesion formation.


Assuntos
Proteína ADAMTS5/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/etiologia , Versicanas/metabolismo , Proteína ADAMTS1/metabolismo , Proteína ADAMTS4/metabolismo , Animais , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Feminino , Estudos de Associação Genética , Hemangioma Cavernoso do Sistema Nervoso Central/embriologia , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Proteólise , Substância Branca/metabolismo
16.
Plast Reconstr Surg Glob Open ; 8(4): e2757, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32440425

RESUMO

BACKGROUND: Burn injury is one of the most debilitating traumas, which induces multiple organ dysfunctions, resulting in high levels of morbidity and mortality. Fibroblast growth factor 2 (FGF2) has been applied to burn injury, whose precise mechanisms underlying facilitating the healing have not been fully understood. Although various animal models have been developed in pigs, rabbits, rats, and mice, no mouse model that creates burns consistent in their extent and depth have not been developed. Here, we developed a mouse burn model, and investigated details of the burn process, and elucidated the mechanisms of FGF2 effects. METHODS: A device with an 8-mm metal probe and a temperature controller was developed, which controls the temperature of the probe. Using the device, 1 or 2 of full-thickness burn injuries were generated on the back under catagen/telogen of 6-month-old C57BL/6 male mice. After 24 hours, FGF2 or phosphate-buffered saline was injected into the injured region, and at days 3, 5, and 7, histological and immunohistochemical analysis was performed to observe the injury and repair process. RESULTS: The device constantly generated a mouse full-thickness burn injury. The repair was initiated on the bottom of the burn as well as the margin. Local treatment with FGF2 displayed higher levels of immunostaining for both CD31+ and alpha-smooth muscle actin. CONCLUSIONS: The device we developed is useful to generate a mouse burn injury model. FGF2 facilitates tissue repair with an increased number of both CD31+ and αSMA+ cells.

17.
Sci Rep ; 10(1): 8631, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32451381

RESUMO

Pulp regeneration after transplantation of mobilized dental pulp stem cells (MDPSCs) declines in the aged dogs due in part to the chronic inflammation and/or cellular senescence. Eotaxin-1/C-C motif chemokine 11 (CCL11) is an inflammation marker via chemokine receptor 3 (CCR3). Moreover, CCR3 antagonist (CCR3A) can inhibit CCL11 binding to CCR3 and prevent CCL11/CCR3 signaling. The study aimed to examine the effect of CCR3A on cellular senescence and anti-inflammation/immunomodulation in human periodontal ligament cells (HPDLCs). The rejuvenating effects of CCR3A on neurite extension and migratory activity to promote pulp regeneration in aged dog teeth were also evaluated. In vivo, the amount of regenerated pulp tissues was significantly increased by transplantation of MDPSCs with CCR3A compared to control without CCR3A. In vitro, senescence of HPDLCs was induced after p-Cresol exposure, as indicated by increased cell size, decreased proliferation and increased senescence markers, p21 and IL-1ß. Treatment of HPDLCs with CCR3A prevented the senescence effect of p-Cresol. Furthermore, CCR3A significantly decreased expression of CCL11, increased expression of immunomodulatory factor, IDO, and enhanced neurite extension and migratory activity. In conclusion, CCR3A protects against p-Cresol-induced cellular senescence and enhances rejuvenating effects, suggesting its potential utility to stimulate pulp regeneration in the aged teeth.


Assuntos
Senescência Celular , Polpa Dentária/fisiologia , Receptores CCR3/antagonistas & inibidores , Rejuvenescimento , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Quimiocina CCL11/metabolismo , Cresóis/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Polpa Dentária/citologia , Cães , Humanos , Interleucina-1beta/metabolismo , Neuritos/fisiologia , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Receptores CCR3/metabolismo , Regeneração/efeitos dos fármacos , Transplante de Células-Tronco , Células-Tronco/citologia , Células-Tronco/metabolismo
18.
Front Immunol ; 11: 232, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194548

RESUMO

Chondroitin sulfate (CS), a type of glycosaminoglycan (GAG), is a linear acidic polysaccharide comprised of repeating disaccharides, modified with sulfate groups at various positions. Except for hyaluronan (HA), GAGs are covalently bound to core proteins, forming proteoglycans (PGs). With highly negative charges, GAGs interact with a variety of physiologically active molecules, including cytokines, chemokines, and growth factors, and control cell behavior during development and in the progression of diseases, including cancer, infections, and inflammation. Heparan sulfate (HS), another type of GAG, and HA are well reported as regulators for leukocyte migration at sites of inflammation. There have been many reports on the regulation of immune cell function by HS and HA; however, regulation of immune cells by CS has not yet been fully understood. This article focuses on the regulatory function of CS in antigen-presenting cells, including macrophages and dendritic cells, and refers to CSPGs, such as versican and biglycan, and the cell surface proteoglycan, syndecan.


Assuntos
Imunidade Adaptativa , Células Apresentadoras de Antígenos/efeitos dos fármacos , Proteoglicanas de Sulfatos de Condroitina/fisiologia , Sulfatos de Condroitina/fisiologia , Células Dendríticas/efeitos dos fármacos , Imunidade Inata , Macrófagos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Biglicano/fisiologia , Configuração de Carboidratos , Sequência de Carboidratos , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Sulfatos de Condroitina/farmacologia , Células Dendríticas/imunologia , Humanos , Receptores de Hialuronatos/fisiologia , Macrófagos/imunologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/fisiologia , Relação Estrutura-Atividade , Sindecanas/fisiologia , Receptores Toll-Like/fisiologia , Versicanas/fisiologia
19.
Matrix Biol ; 87: 77-93, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31669737

RESUMO

Versican is a large chondroitin sulfate/dermatan sulfate proteoglycan in the extracellular matrix, and is expressed at high levels in tissues during development and remodeling in pathological conditions. Its core protein is cleaved at a region close to the N-terminal end of CSß domain by several members of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family, i.e., ADAMTS-1, 4, 5, 9, 15, and 20. Here, using a CRISPR/Cas9 system, we generated knock-in mice (V1R), which express an ADAMTS cleavage-resistant versican. Some V1R homozygote mice, termed R/R, exhibit syndactyly and organ hemorrhage. In wound healing experiments, R/R wound shows accumulation of versican and activated TGFß-signaling in the early stage, leading to faster healing than wild type wound. Immunostaining for Ki67, CD31, smooth muscle α-actin, periostin demonstrates higher levels of overall cell proliferation and an increased number of endothelial cells and myofibroblasts. Immunostaining for CD11b and qRT-PCR for macrophage markers revealed increased levels of inflammatory cell infiltration, especially those of M1 macrophages. Cultured R/R dermal fibroblasts revealed increased deposition of versican, type I and III collagens, and hyaluronan, and upregulation of Smad2/3 signaling. Taken together, these results demonstrate that the cleavage site determines versican turnover and that versican plays a central role in the provisional matrix during the wound repair.


Assuntos
Proteínas ADAMTS/metabolismo , Hemorragia/genética , Sindactilia/genética , Versicanas/química , Versicanas/genética , Cicatrização , Animais , Sistemas CRISPR-Cas , Proliferação de Células , Células Cultivadas , Matriz Extracelular/metabolismo , Técnicas de Introdução de Genes , Masculino , Camundongos , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Versicanas/metabolismo
20.
Sci Rep ; 9(1): 9475, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263118

RESUMO

Versican is an evolutionary conserved extracellular matrix proteoglycan, and versican expression loss in mice results in embryonic lethality owing to cardiovascular defects. However, the in utero development of mammals limits our understanding of the precise role of versican during cardiovascular development. Therefore, the use of evolutionarily distant species that develop ex utero is more suitable for studying the mechanistic basis of versican activity. We performed ENU mutagenesis screening to identify medaka mutants with defects in embryonic cardiovascular development. In this study, we described a recessive point mutation in the versican 3'UTR resulting in reduced versican protein expression. The fully penetrant homozygous mutant showed termination of cardiac development at the linear heart tube stage and exhibited absence of cardiac looping, a constricted outflow tract, and no cardiac jelly. Additionally, progenitor cells did not migrate from the secondary source towards the arterial pole of the linear heart tube, resulting in a constricted outflow tract. Furthermore, mutants lacked blood flow and vascular lumen despite continuous peristaltic heartbeats. These results enhance our understanding of the mechanistic basis of versican in cardiac development, and this mutant represents a novel genetic model to investigate the mechanisms of vascular tubulogenesis.


Assuntos
Proteínas de Peixes/metabolismo , Coração/embriologia , Organogênese , Oryzias/embriologia , Versicanas/metabolismo , Regiões 3' não Traduzidas , Animais , Proteínas de Peixes/genética , Oryzias/genética , Mutação Puntual , Versicanas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA