Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
2.
PLoS One ; 12(11): e0187476, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29095885

RESUMO

Tenacibaculosis is an increasing problem in the Norwegian Atlantic salmon aquaculture industry causing significant economic losses. In September 2015, two separate outbreaks of suspected tenacibaculosis occurred at two Atlantic salmon farms in Finnmark County in Northern Norway. The events resulted in major losses of smolts newly transferred into seawater. Prior to, and during the outbreaks, large numbers of small jellyfish, identified as Dipleurosoma typicum (Boeck) were observed in the vicinity of the farms and inside the net-pens. This study investigates the possible link between the jellyfish, Tenacibaculum spp. and the tenacibaculosis outbreaks. Bacteriology, histology, scanning and transmission electron microscopy, and real-time RT-PCR screening were performed on both fish and jellyfish samples. Based on the findings, Tenacibaculum finnmarkense was found to be the dominant bacteria associated with the tenacibaculosis outbreaks at both sites and that D. typicum is unlikely to be a vector for this fish pathogenic bacterium. However, results do show that the jellyfish caused direct damage to the fish's skin and may have exacerbated the bacterial infection by allowing an entry point for bacteria.


Assuntos
Aquicultura , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/microbiologia , Cifozoários/crescimento & desenvolvimento , Animais , Surtos de Doenças/veterinária , Doenças dos Peixes/etiologia , Noruega/epidemiologia , Salmo salar
3.
Antonie Van Leeuwenhoek ; 109(2): 273-85, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26662517

RESUMO

A novel Gram-stain negative, aerobic, non-flagellated, rod-shaped gliding bacterial strain, designated HFJ(T), was isolated from a skin lesion of a diseased Atlantic salmon (Salmo salar L.) in Finnmark, Norway. Colonies were observed to be yellow pigmented with entire and/or undulating margins and did not adhere to the agar. The 16S rRNA gene sequence showed that the strain belongs to the genus Tenacibaculum (family Flavobacteriaceae, phylum 'Bacteroidetes'). Strain HFJ(T) exhibits high 16S rRNA gene sequence similarity values to Tenacibaculum dicentrarchi NCIMB 14598(T) (97.2 %). The strain was found to grow at 2-20 °C and only in the presence of sea salts. The respiratory quinone was identified as menaquinone 6 and the major fatty acids were identified as summed feature 3 (comprising C16:1 ω7c and/or iso-C15:0 2-OH), iso-C15:0, anteiso-C15:0, iso-C15:1 and iso-C15:0 3-OH. The DNA G+C content was determined to be 34.1 mol%. DNA-DNA hybridization and comparative phenotypic and genetic tests were performed with the phylogenetically closely related type strains, T. dicentrarchi NCIMB 14598(T) and Tenacibaculum ovolyticum NCIMB 13127(T). These data, as well as phylogenetic analyses, suggest that strain HFJ(T) should be classified as a representative of a novel species in the genus Tenacibaculum, for which the name Tenacibaculum finnmarkense sp. nov. is proposed; the type strain is HFJ (T) = (DSM 28541(T) = NCIMB 42386(T)).


Assuntos
Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Salmo salar/microbiologia , Tenacibaculum/isolamento & purificação , Animais , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Infecções por Flavobacteriaceae/microbiologia , Dados de Sequência Molecular , Noruega , Filogenia , RNA Ribossômico 16S/genética , Tenacibaculum/classificação , Tenacibaculum/genética , Tenacibaculum/metabolismo
4.
Arch Microbiol ; 197(2): 311-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25416125

RESUMO

Certain wrasse species (Labridae) are used as cleaner fish in salmon farms on the Norwegian coast, reducing salmon louse intensities. The pathogen repertoire of wrasse in Norway is poorly known, and the objective of the present study is to describe a novel intracellular bacterium detected in Norwegian Labrus bergylta. Histological examination of gill tissues from ballan wrasse, L. bergylta, revealed epitheliocysts occurring basally to the secondary lamellae in the interlamellar epithelium. Ultrastructurally, these had bacteria-filled inclusions with thickened membranes and radiating ray-like structures (actinae). 16S rRNA gene sequences from the gill bacteria showed the highest (97.1 %) similarity to Candidatus Similichlamydia latridicola from the gills of the latrid marine fish Latris lineata in Australia and 94.9 % similarity to Candidatus Actinochlamydia clariae, causing epitheliocystis in the freshwater catfish Clarias gariepinus in Uganda. A total of 47 gill samples from L. bergylta from Western Norway were screened by real time RT-PCR with an assay targeting Candidatus Actinochlamydiaceae 16S rRNA. Prevalence was 100 %. We propose the name Candidatus Similichlamydia labri sp. nov. for this new agent producing gill epitheliocysts in L. bergylta.


Assuntos
Infecções por Chlamydiaceae/veterinária , Chlamydiaceae/classificação , Doenças dos Peixes/microbiologia , Brânquias/microbiologia , Perciformes/microbiologia , Animais , Chlamydiaceae/genética , Chlamydiaceae/isolamento & purificação , Infecções por Chlamydiaceae/epidemiologia , Infecções por Chlamydiaceae/microbiologia , Doenças dos Peixes/epidemiologia , Espaço Intracelular/microbiologia , Noruega/epidemiologia , Prevalência , RNA Ribossômico 16S/genética , Especificidade da Espécie
5.
Arch Virol ; 160(1): 91-102, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25348270

RESUMO

A new aquareovirus was isolated from cultured Atlantic halibut (Hippoglossus hippoglossus) fry at a facility where massive mortalities had occurred during the start-feeding phase. The same virus was also detected in juveniles (about 10 grams) of the 2013 generation at two other production sites, but not in larger fish from generations 2007-2012. The virus replicated in BF-2 and CHSE-214 cell cultures and produced syncytia and plaque-like cytopathic effects. This Atlantic halibut reovirus (AHRV) was associated with necrosis of the liver and pancreas, syncytium formation in these tissues, and distinct viroplasm areas within the syncytium in halibut fry. Transmission electron microscopy revealed that the viroplasm contained virions, non-enveloped, icosahedral particles approximately 70 nm in diameter with a double capsid layer, amorphous material, and tubular structures. The RNA-dependent RNA polymerase (RdRp) gene from the AHRV isolates showed the highest amino acid sequence identity (80 %) to an isolate belonging to the species Aquareovirus A, Atlantic salmon reovirus TS (ASRV-TS). A partial sequence from the putative fusion-associated small transmembrane (FAST) protein of AHRV was obtained, and this sequence showed the highest amino acid sequence identity (46.8 %) to Green River Chinook virus which is an unassigned member of the genus Aquareovirus, while a comparison with isolates belonging to the species Aquareovirus A showed <33 % identity. A proper assessment of the relationship of AHRV to all members of the genus Aquareovirus, however, is hampered by the absence of genetic data from members of several Aquareovirus species. AHRV is the first aquareovirus isolated from a marine coldwater fish species and the second reovirus detected in farmed fish in Norway. A similar disease of halibut fry, as described in this paper, has also been described in halibut production facilities in Canada and Scotland.


Assuntos
Aquicultura , Doenças dos Peixes/virologia , Linguado , Infecções por Reoviridae/veterinária , Reoviridae/isolamento & purificação , Animais , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/mortalidade , Noruega/epidemiologia , Filogenia , Reoviridae/genética , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/mortalidade , Infecções por Reoviridae/virologia
6.
Arch Microbiol ; 197(1): 17-25, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25294188

RESUMO

Two Chlamydiales have previously been found to infect Atlantic salmon (Salmo salar L.), Candidatus Piscichlamydia salmonis and Candidatus Clavichlamydia salmonicola. Both develop intracellularly in cyst-like inclusions in gill cells, generally referred to as epitheliocysts. Here, we present evidence for the association of a novel species of Chlamydiales with epitheliocystis in Atlantic salmon. Based on its partial 16S rRNA gene sequence, it is a new member of the family Simkaniaceae, and a 95.7 % identity to the type species Candidatus Syngnamydia venezia suggests inclusion in the candidate genus Syngnamydia. The presence of the bacterium in epitheliocysts in gills of Atlantic salmon was demonstrated by RNA-RNA hybridization. Ultrastructurally, the novel bacterium produces pleomorphic reticulate bodies and elementary bodies (EBs) with a characteristic morphology. The EBs are short rods with a terminal disc-like cap area, a sub-apical spherical vacuole-like electron-lucent structure and a post-equatorial nucleoid. We propose the name Candidatus Syngnamydia salmonis for this new agent from epitheliocysts in seawater-reared salmon .


Assuntos
Chlamydiales/classificação , Chlamydiales/isolamento & purificação , Doenças dos Peixes/microbiologia , Brânquias/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Corpos de Inclusão/microbiologia , Salmo salar/microbiologia , Animais , Chlamydiales/genética , Chlamydiales/ultraestrutura , Células Epiteliais/microbiologia , Células Epiteliais/ultraestrutura , Doenças dos Peixes/patologia , Brânquias/ultraestrutura , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/patologia , Corpos de Inclusão/ultraestrutura , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Água do Mar , Análise de Sequência de DNA , Vacúolos/ultraestrutura
7.
PLoS One ; 9(11): e112517, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25402203

RESUMO

Several new viruses have emerged during farming of salmonids in the North Atlantic causing large losses to the industry. Still the blood feeding copepod parasite, Lepeophtheirus salmonis, remains the major challenge for the industry. Histological examinations of this parasite have revealed the presence of several virus-like particles including some with morphologies similar to rhabdoviruses. This study is the first description of the genome and target tissues of two new species of rhabdoviruses associated with pathology in the salmon louse. Salmon lice were collected at different Atlantic salmon (Salmo salar) farming sites on the west coast of Norway and prepared for histology, transmission electron microscopy and Illumina sequencing of the complete RNA extracted from these lice. The nearly complete genomes, around 11,600 nucleotides encoding the five typical rhabdovirus genes N, P, M, G and L, of two new species were obtained. The genome sequences, the putative protein sequences, and predicted transcription strategies for the two viruses are presented. Phylogenetic analyses of the putative N and L proteins indicated closest similarity to the Sigmavirus/Dimarhabdoviruses cluster, however, the genomes of both new viruses are significantly diverged with no close affinity to any of the existing rhabdovirus genera. In situ hybridization, targeting the N protein genes, showed that the viruses were present in the same glandular tissues as the observed rhabdovirus-like particles. Both viruses were present in all developmental stages of the salmon louse, and associated with necrosis of glandular tissues in adult lice. As the two viruses were present in eggs and free-living planktonic stages of the salmon louse vertical, transmission of the viruses are suggested. The tissues of the lice host, Atlantic salmon, with the exception of skin at the attachment site for the salmon louse chalimi stages, were negative for these two viruses.


Assuntos
Copépodes/virologia , Genoma Viral , Genômica , Filogenia , Rhabdoviridae/classificação , Rhabdoviridae/genética , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Animais , Sequência de Bases , Feminino , Doenças dos Peixes/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Rhabdoviridae/ultraestrutura , Proteínas Virais/química , Proteínas Virais/genética
8.
PLoS One ; 8(6): e66840, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23826156

RESUMO

BACKGROUND AND OBJECTIVES: Epitheliocystis, caused by bacteria infecting gill epithelial cells in fish, is common among a large range of fish species in both fresh- and seawater. The aquaculture industry considers epitheliocystis an important problem. It affects the welfare of the fish and the resulting gill disease may lead to mortalities. In a culture facility in Kampala, Uganda, juveniles of the African sharptooth catfish (Clarias gariepinus) was observed swimming in the surface, sometimes belly up, showing signs of respiratory problems. Histological examination of gill tissues from this fish revealed large amounts of epitheliocysts, and also presence of a few Ichthyobodo sp. and Trichodina sp. METHODS AND RESULTS: Sequencing of the epitheliocystis bacterium 16S rRNA gene shows 86.3% similarity with Candidatus Piscichlamydia salmonis causing epitheliocystis in Atlantic salmon (Salmo salar). Transmission electron microscopy showed that the morphology of the developmental stages of the bacterium is similar to that of members of the family Chlamydiaceae. The similarity of the bacterium rRNA gene sequences compared with other chlamydia-like bacteria ranged between 80.5% and 86.3%. Inclusions containing this new bacterium have tubules/channels (termed actinae) that are radiating from the inclusion membrane and opening on the cell surface or in neighbouring cells. CONCLUSIONS: Radiation of tubules/channels (actinae) from the inclusion membrane has never been described in any of the other members of Chlamydiales. It seems to be a completely new character and an apomorphy. We propose the name Candidatus Actinochlamydia clariae gen. nov., sp. nov. (Actinochlamydiaceae fam. nov., order Chlamydiales, phylum Chlamydiae) for this new agent causing epitheliocystis in African sharptooth catfish.


Assuntos
Infecções Bacterianas/microbiologia , Peixes-Gato/microbiologia , Chlamydiales/fisiologia , Epitélio/microbiologia , Epitélio/patologia , Doenças dos Peixes/microbiologia , Espaço Intracelular/microbiologia , Animais , Chlamydiales/ultraestrutura , Epitélio/ultraestrutura , Doenças dos Peixes/patologia , Brânquias/microbiologia , Brânquias/patologia , Corpos de Inclusão/patologia , Corpos de Inclusão/ultraestrutura , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Uganda
9.
Parasitology ; 138(9): 1164-75, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21756424

RESUMO

Phylogenetic analyses of SSU rDNA sequences have previously revealed the existence of 2 Ichthyobodo species able to infect Atlantic salmon (Salmo salar L.). Ichthyobodo necator sensu stricto (s.s.) is assumed to be a freshwater parasite, while a genetically distinct but undescribed species, Ichthyobodo sp. II sensu Todal et al. (2004) have been detected on Atlantic salmon in both fresh- and seawater. In the present study a morphological description of Ichthyobodo sp. II from the gills of salmon reared in fresh-, brackish- and seawater is presented, using both light- and electron microscopy. Comparative morphometry show that Ichthyobodo sp. II from both freshwater and seawater displays a different cell shape, and is significantly smaller than I. necator s.s. Also, ultrastructural characteristics distinguish these two species, notably differences in the attachment region and the presence of spine-like surface projections in Ichthyobodo sp. II. Based on both unique SSU rDNA sequences and morphological characteristics, we conclude that Ichthyobodo sp. II. represents a novel species for which we propose the name Ichthyobodo salmonis sp. n.


Assuntos
Infecções por Euglenozoa/parasitologia , Doenças dos Peixes/parasitologia , Brânquias/parasitologia , Kinetoplastida/citologia , Infecções Protozoárias em Animais/parasitologia , Salmo salar/parasitologia , Animais , Forma Celular , Tamanho Celular , DNA Ribossômico/isolamento & purificação , Infecções por Euglenozoa/patologia , Doenças dos Peixes/patologia , Água Doce , Interações Hospedeiro-Parasita , Kinetoplastida/classificação , Kinetoplastida/fisiologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Noruega , Filogenia , Infecções Protozoárias em Animais/patologia , Água do Mar , Análise de Sequência de DNA
10.
Virol J ; 7: 19, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20102597

RESUMO

BACKGROUND: Norwegian production of rainbow trout (Oncorhynchus mykiss) has been without any outbreaks of VHS for many years until the disease emerged in a farm in western Norway in November 2007. The fish were, in addition to VHS virus, positive for gill chlamydia-like bacteria, Flavobacterium psychrophilum, and a microsporidian. A new VHS virus genotype III was isolated from the fish in RTgill-W1 cells and the complete coding region (11,065 nucleotides) was sequenced. This virus was also used in a challenge experiment to see if it could cause any mortality in rainbow trout in sea water. RESULTS: This is the first time a nearly complete sequence of a genotype III virus isolate has been presented. The organization of the genes is the same as in the other VHS virus genotypes studied (GI and GIV). Between the ORFs are nontranslated regions that contain highly conserved sequences encompassing the polyadenylation signal for one gene, and the putative transcription initiation site of the next gene. The intergenic regions vary in length from 74 nt to 128 nt. The nucleotide sequence is more similar to genotype I isolates compared to isolates from genotype II and IV. Analyses of the sequences of the N and G protein genes show that this new isolate is distinct from other VHS virus isolates and groups closely together with isolates from genotype III. In a challenge experiment, using intraperitoneal (ip) injection of the isolate, co-habitation with infected fish, and bath challenge, mortalities slightly above 40% were obtained. There was no significant difference in mortality between the bath challenged group and the ip injected group, while the mortality in the co-habitation group was as low as 30%. CONCLUSIONS: All VHS virus isolates in genotype III are from marine fish in the North East Atlantic. Unlike the other known genotype III isolates, which are of low virulence, this new isolate is moderately virulent. It was not possible to detect any changes in the virus genome that could explain the higher virulence. A major problem for the study of virulence factors is the lack of information about other genotype III isolates.


Assuntos
Septicemia Hemorrágica Viral/virologia , Novirhabdovirus/classificação , Novirhabdovirus/isolamento & purificação , Oncorhynchus mykiss/virologia , Animais , Aquicultura , Análise por Conglomerados , DNA Intergênico , Ordem dos Genes , Genótipo , Septicemia Hemorrágica Viral/mortalidade , Dados de Sequência Molecular , Noruega , Novirhabdovirus/genética , Novirhabdovirus/patogenicidade , Fases de Leitura Aberta , Filogenia , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência , Análise de Sobrevida , Sintenia , Proteínas Virais/genética , Virulência
11.
J Eukaryot Microbiol ; 57(2): 95-114, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20070452

RESUMO

Paranucleospora theridion n. gen, n. sp., infecting both Atlantic salmon (Salmo salar) and its copepod parasite Lepeophtheirus salmonis is described. The microsporidian exhibits nuclei in diplokaryotic arrangement during all known life-cycle stages in salmon, but only in the merogonal stages and early sporogonal stage in salmon lice. All developmental stages of P. theridion are in direct contact with the host cell cytoplasm or nucleoplasm. In salmon, two developmental cycles were observed, producing spores in the cytoplasm of phagocytes or epidermal cells (Cycle-I) and in the nuclei of epidermal cells (Cycle-II), respectively. Cycle-I spores are small and thin walled with a short polar tube, and are believed to be autoinfective. The larger oval intranuclear Cycle-II spores have a thick endospore and a longer polar tube, and are probably responsible for transmission from salmon to L. salmonis. Parasite development in the salmon louse occurs in several different cell types that may be extremely hypertrophied due to P. theridion proliferation. Diplokaryotic merogony precedes monokaryotic sporogony. The rounded spores produced are comparable to the intranuclear spores in the salmon in most aspects, and likely transmit the infection to salmon. Phylogenetic analysis of P. theridion partial rDNA sequences place the parasite in a position between Nucleospora salmonis and Enterocytozoon bieneusi. Based on characteristics of the morphology, unique development involving a vertebrate fish as well as a crustacean ectoparasite host, and the results of the phylogenetic analyses it is suggested that P. theridion should be given status as a new species in a new genus.


Assuntos
Apansporoblastina/classificação , Apansporoblastina/crescimento & desenvolvimento , Copépodes/parasitologia , Estágios do Ciclo de Vida , Salmo salar/parasitologia , Animais , Apansporoblastina/genética , Apansporoblastina/isolamento & purificação , Núcleo Celular/parasitologia , Citoplasma/parasitologia , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Epiderme/parasitologia , Células Epiteliais/parasitologia , Genes de RNAr , Dados de Sequência Molecular , Fagócitos/parasitologia , RNA de Protozoário/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Esporos de Protozoários/citologia
12.
Environ Microbiol ; 10(1): 208-18, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17894816

RESUMO

The phylum Chlamydiae contains obligate intracellular bacteria, several of which cause disease in their hosts. Morphological studies have suggested that this group of bacteria may be pathogens of fish, causing cysts in epithelial tissue - epitheliocystis. Recently, the first genetic evidence of a chlamydial aetiology of this disease in seawater reared Atlantic salmon from Norway and Ireland was presented, and the agent was given the name 'Candidatus Piscichlamydia salmonis'. In this article we present molecular evidence for the existence of a novel Chlamydiae that also may cause epitheliocystis in Norwegian salmonids. This novel Chlamydiae has been found in salmonid fish from freshwater, and based on its partial 16S rRNA gene, it may constitute a third genus in the family Chlamydiaceae, or a closely related sister family. By using whole-mount RNA-RNA hybridization we demonstrate how infected cells are distributed in a patchy manner on a gill arch. The morphology of the novel Chlamydiae includes the characteristic head-and-tail cells that have been described earlier from salmonid fish suffering from epitheliocystis. We propose the name 'Candidatus Clavochlamydia salmonicola' for this agent of epitheliocystis in freshwater salmonids.


Assuntos
Infecções por Chlamydiaceae/veterinária , Chlamydiaceae/classificação , Doenças dos Peixes/microbiologia , Salmonidae/microbiologia , Animais , Sequência de Bases , Chlamydiaceae/genética , Infecções por Chlamydiaceae/microbiologia , Ecologia , Água Doce/microbiologia , Brânquias/microbiologia , Brânquias/patologia , Hibridização In Situ , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Noruega , Filogenia
13.
Arch Microbiol ; 185(5): 383-92, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16614828

RESUMO

In 2004, a new disease was detected in cod (Gadus morhua) in western Norway. Affected cod had white granulomas in the visceral organs and skin. A species of Francisella was isolated on blood agar plates from moribund cod. The bacterium could be grown at temperatures ranging from 6 to 22 degrees C, but did not grow at 37 degrees C. Challenge experiments showed that Francisella sp. was the cause for the new disease. The 16S rDNA gene sequence from Francisella sp. showed 99.17% similarity to F. philomiragia, and the 16S-23S ribosomal RNA intergenic spacer (249 nt), shows a similarity with that from Francisella isolated from tilapia and F. tularensis of 96.8 and 35.9%, respectively. The 23S sequence is more similar to F. tularensis, 97.7% (2,862 nt), compared to the tilapia isolate 96.8% (2,131 nt). The partial putative outer membrane protein (FopA) sequence (781 nt) from Francisella sp. shows a similarity with that from F. tularensis and F. philomiragia of 77.3 and 98.2%, respectively. Based on sequence data, culturing temperatures and pathogenicity for cod, it is suggested that this Francisella sp. from cod could be a new species of Francisella, Family Francisellaceae.


Assuntos
Doenças dos Peixes/microbiologia , Francisella/isolamento & purificação , Gadus morhua/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Animais , Proteínas da Membrana Bacteriana Externa/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Doenças dos Peixes/patologia , Francisella/classificação , Francisella/citologia , Francisella/fisiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/mortalidade , Infecções por Bactérias Gram-Negativas/patologia , Histocitoquímica , Rim/microbiologia , Rim/patologia , Rim/ultraestrutura , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Noruega , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Análise de Sequência de DNA , Homologia de Sequência , Pele/microbiologia , Baço/microbiologia , Baço/patologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA