Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Synth Biol ; 9(12): 3322-3333, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33179507

RESUMO

Protein dimerization systems controlled by red light with increased tissue penetration depth are a highly needed tool for clinical applications such as cell and gene therapies. However, mammalian applications of existing red light-induced dimerization systems are hampered by limitations of their two components: a photosensory protein (or photoreceptor) which often requires a mammalian exogenous chromophore and a naturally occurring photoreceptor binding protein typically having a complex structure and nonideal binding properties. Here, we introduce an efficient, generalizable method (COMBINES-LID) for creating highly specific, reversible light-induced heterodimerization systems independent of any existing binders to a photoreceptor. It involves a two-step binder screen (phage display and yeast two-hybrid) of a combinatorial nanobody library to obtain binders that selectively engage a light-activated form of a photoswitchable protein or domain not the dark form. Proof-of-principle was provided by engineering nanobody-based, red light-induced dimerization (nanoReD) systems comprising a truncated bacterial phytochrome sensory module using a mammalian endogenous chromophore, biliverdin, and light-form specific nanobodies. Selected nanoReD systems were biochemically characterized, exhibiting low dark activity and high induction specificity, and further demonstrated for the reversible control of protein translocation and activation of gene expression in mice. Overall, COMBINES-LID opens new opportunities for creating genetically encoded actuators for the optical manipulation of biological processes.


Assuntos
Luz , Anticorpos de Cadeia Única/metabolismo , Animais , Calorimetria , Deinococcus/metabolismo , Dimerização , Células HEK293 , Humanos , Interferometria , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Biblioteca de Peptídeos , Fitocromo/química , Plasmídeos/genética , Plasmídeos/metabolismo , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Ativação Transcricional/efeitos da radiação
2.
J Vis Exp ; (155)2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-32009651

RESUMO

Protein dimerization events that occur only in the presence of a small-molecule ligand enable the development of small-molecule biosensors for the dissection and manipulation of biological pathways. Currently, only a limited number of chemically induced dimerization (CID) systems exist and engineering new ones with desired sensitivity and selectivity for specific small-molecule ligands remains a challenge in the field of protein engineering. We here describe a high throughput screening method, combinatorial binders-enabled selection of CID (COMBINES-CID), for the de novo engineering of CID systems applicable to a large variety of ligands. This method uses the two-step selection of a phage-displayed combinatorial nanobody library to obtain 1) "anchor binders" that first bind to a ligand of interest and then 2) "dimerization binders" that only bind to anchor binder-ligand complexes. To select anchor binders, a combinatorial library of over 109 complementarity-determining region (CDR)-randomized nanobodies is screened with a biotinylated ligand and hits are validated with the unlabeled ligand by bio-layer interferometry (BLI). To obtain dimerization binders, the nanobody library is screened with anchor binder-ligand complexes as targets for positive screening and the unbound anchor binders for negative screening. COMBINES-CID is broadly applicable to select CID binders with other immunoglobulin, non-immunoglobulin, or computationally designed scaffolds to create biosensors for in vitro and in vivo detection of drugs, metabolites, signaling molecules, etc.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Biblioteca de Peptídeos , Engenharia de Proteínas/métodos , Dimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA