RESUMO
Heparan sulfate (HS) is ubiquitous on cell surfaces and is used as a receptor by many viruses including SARS-CoV-2. However, increased activity of the inflammatory enzyme heparanase (HPSE), which hydrolyses HS, in patients with COVID-19 not only increases the severity of symptoms but also may facilitate the spread of the virus by degrading HS on the cell surface. Therefore, synthetic HPSE blockades, which can bind to SARS-CoV-2 spike protein (SARS-CoV-2-S) and inhibit viral entry, have attracted much attention. This study investigated the development of a new dual-targeting antiviral agent against HPSE and SARS-CoV-2-S using fucoidan as a structural motif. It was found that all-sulfated fucoidan derivative 10, which exhibited the highest binding affinity to SARS-CoV-2-S among 13 derivatives, also showed the highest inhibitory activity against HPSE. Based on this, a newly designed and synthesized fucoidan analogue 16, in which the octyl group of 10 was changed to a cholestanyl group, was found to show higher activity than 10 but did not inhibit factor Xa associated with undesired anticoagulant effects. The binding affinity of 16 to SARS-CoV-2-S was significantly increased approximately 400-fold over that of 10. Furthermore, 16 effectively inhibited infection by the SARS-CoV-2 Wuhan strain and two Omicron subvariants.
RESUMO
Recent advances in DNA sequencing technology have dramatically improved our understanding of the gut microbiota of various animal species. However, research on the gut microbiota of birds lags behind that of many other vertebrates, and information about the gut microbiota of wild birds such as migratory waterfowl is particularly lacking. Because the ecology of migratory waterfowl (e.g., lifestyle, diet, physiological characteristics) differs from that of other birds, the gut microbiota of migratory waterfowl likely also differs, but much is still unknown. The hooded crane (Grus monacha) is an important representative migratory waterbird species and is listed as endangered on the International Union for Conservation of Nature and Natural Resources Red List of Threatened Species. In this study, we analyzed the bacterial and viral microbiota in the gut of hooded cranes by using deep sequencing data from fecal samples of hooded cranes that winter on the Izumi plain in Japan, and found that Cetobacterium, Clupeiformes, and Pbunavirus were clearly present in the fecal samples of hooded cranes. These findings advance our understanding of the ecology of hooded cranes.
RESUMO
Novel respiratory viruses can cause a pandemic and then evolve to coexist with humans. The Omicron strain of severe acute respiratory syndrome coronavirus 2 has spread worldwide since its emergence in late 2021, and its sub-lineages are now established in human society. Compared to previous strains, Omicron is markedly less invasive in the lungs and causes less severe disease. One reason for this is that humans are acquiring immunity through previous infection and vaccination, but the nature of the virus itself is also changing. Using our newly established low-volume inoculation system, which reflects natural human infection, we show that the Omicron strain spreads less efficiently into the lungs of hamsters compared with an earlier Wuhan strain. Furthermore, by characterizing chimeric viruses with the Omicron gene in the Wuhan strain genetic background and vice versa, we found that viral genes downstream of ORF3a, but not the S gene, were responsible for the limited spread of the Omicron strain in the lower airways of the virus-infected hamsters. Moreover, molecular evolutionary analysis of SARS-CoV-2 revealed a positive selection of genes downstream of ORF3a (M and E genes). Our findings provide insight into the adaptive evolution of the virus in humans during the pandemic convergence phase.IMPORTANCEThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has spread worldwide since its emergence in late 2021, and its sub-lineages are established in human society. Compared to previous strains, the Omicron strain is less invasive in the lower respiratory tract, including the lungs, and causes less severe disease; however, the mechanistic basis for its restricted replication in the lower airways is poorly understood. In this study, using a newly established low-volume inoculation system that reflects natural human infection, we demonstrated that the Omicron strain spreads less efficiently into the lungs of hamsters compared with an earlier Wuhan strain and found that viral genes downstream of ORF3a are responsible for replication restriction in the lower respiratory tract of Omicron-infected hamsters. Furthermore, we detected a positive selection of genes downstream of ORF3a (especially the M and E genes) in SARS-CoV-2, suggesting that these genes may undergo adaptive changes in humans.
Assuntos
COVID-19 , Evolução Molecular , SARS-CoV-2 , Animais , Cricetinae , COVID-19/virologia , Pulmão/virologia , Mesocricetus , SARS-CoV-2/genética , SARS-CoV-2/fisiologiaRESUMO
Although the global crisis caused by the coronavirus disease 2019 (COVID-19) pandemic is over, the global epidemic of the disease continues. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the cause of COVID-19, initiates infection via the binding of the receptor-binding domain (RBD) of its spike protein to the human angiotensin-converting enzyme II (ACE2) receptor, and this interaction has been the primary target for the development of COVID-19 therapeutics. Here, we identified neutralizing antibodies against SARS-CoV-2 by screening mouse monoclonal antibodies and characterized an antibody, CSW1-1805, that targets a narrow region at the RBD ridge of the spike protein. CSW1-1805 neutralized several variants in vitro and completely protected mice from SARS-CoV-2 infection. Cryo-EM and biochemical analyses revealed that this antibody recognizes the loop region adjacent to the ACE2-binding interface with the RBD in both a receptor-inaccessible "down" state and a receptor-accessible "up" state and could stabilize the RBD conformation in the up-state. CSW1-1805 also showed different binding orientations and complementarity determining region properties compared to other RBD ridge-targeting antibodies with similar binding epitopes. It is important to continuously characterize neutralizing antibodies to address new variants that continue to emerge. Our characterization of this antibody that recognizes the RBD ridge of the spike protein will aid in the development of future neutralizing antibodies.IMPORTANCESARS-CoV-2 cell entry is initiated by the interaction of the viral spike protein with the host cell receptor. Therefore, mechanistic findings regarding receptor recognition by the spike protein help uncover the molecular mechanism of SARS-CoV-2 infection and guide neutralizing antibody development. Here, we characterized a SARS-CoV-2 neutralizing antibody that recognizes an epitope, a loop region adjacent to the receptor-binding interface, that may be involved in the conformational transition of the receptor-binding domain (RBD) of the spike protein from a receptor-inaccessible "down" state into a receptor-accessible "up" state, and also stabilizes the RBD in the up-state. Our mechanistic findings provide new insights into SARS-CoV-2 receptor recognition and guidance for neutralizing antibody development.
Assuntos
Anticorpos Neutralizantes , COVID-19 , Humanos , Animais , Camundongos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , EpitoposRESUMO
It is essential to employ efficient measures to prevent the transmission of pathogenic agents during a pandemic. One such method involves using hypochlorous acid (HClO) solution. The oxidative properties of HClO water (HAW) can contribute to its ability to eliminate viral particles. Here, we examined a highly purified slightly acidic hypochlorous acid water (Hp-SA-HAW) obtained from the reverse osmosis membrane treatment of an electrolytically-generated SA-HAW for its anti-viral activity and mode of action on viral proteins. Hp-SA-HAW exhibited broad-spectrum antiviral effects against various viruses, including adenovirus, hepatitis B virus, Japanese encephalitis virus (JEV), and rotavirus. Additionally, Hp-SA-HAW treatment dose-dependently resulted in irreversibly aggregated multimers of the JEV envelope and capsid proteins. However, Hp-SA-HAW treatment had no discernible effect on viral RNA, indicating that Hp-SA-HAW acts against amino acids rather than nucleic acids. Furthermore, Hp-SA-HAW substantially reduced the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including the ancestral variant and other multiple variants. Hp-SA-HAW treatment induced the aggregation of the SARS-CoV-2 spike and nuclear proteins and disrupted the binding of the purified spike protein of SARS-CoV-2 to human ACE2. This study demonstrates that the broad-spectrum virucidal activity of highly purified HClO is attributed to viral protein aggregation of virion via protein oxidation.
RESUMO
The numerous influenza infections that occur every year present a major public health problem. Influenza vaccines are important for the prevention of the disease; however, their effectiveness against infection can be suboptimal. Particularly in the elderly, immune induction can be insufficient, and the vaccine efficacy against infection is usually lower than that in young adults. Vaccine efficacy can be improved by the addition of adjuvants, and an influenza vaccine with an oil-in-water adjuvant MF59, FLUAD, has been recently licensed in the United States and other countries for persons aged 65 years and older. Although the adverse effects of adjuvanted vaccines have been a concern, many adverse effects of currently approved adjuvanted influenza vaccines are mild and acceptable, given the overriding benefits of the vaccine. Since sufficient immunity can be induced with a small amount of vaccine antigen in the presence of an adjuvant, adjuvanted vaccines promote dose sparing and the prompt preparation of vaccines for pandemic influenza. Adjuvants not only enhance the immune response to antigens but can also be effective against antigenically different viruses. In this narrative review, we provide an overview of influenza vaccines, both past and present, before presenting a discussion of adjuvanted influenza vaccines and their future.
RESUMO
H7N9 avian influenza viruses (AIVs) have caused over 1,500 documented human infections since emerging in 2013. Although wild-type H7N9 AIVs can be transmitted by respiratory droplets in ferrets, they have not yet caused widespread outbreaks in humans. Previous studies have revealed molecular determinants of H7N9 AIV host switching, but little is known about potential evolutionary constraints on this process. Here, we compare patterns of sequence evolution for H7N9 AIV and mammalian H1N1 viruses during replication and transmission in ferrets. We show that three main factors-purifying selection, stochasticity, and very narrow transmission bottlenecks-combine to severely constrain the ability of H7N9 AIV to effectively adapt to mammalian hosts in isolated, acute spillover events. We find rare evidence of natural selection favoring new, potentially mammal-adapting mutations within ferrets but no evidence of natural selection acting during transmission. We conclude that human-adapted H7N9 viruses are unlikely to emerge during typical spillover infections. Our findings are instead consistent with a model in which the emergence of a human-transmissible virus would be a rare and unpredictable, though highly consequential, 'jackpot' event. Strategies to control the total number of spillover infections will limit opportunities for the virus to win this evolutionary lottery.
RESUMO
Coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), encode a proofreading exonuclease, nonstructural protein 14 (nsp14), that helps ensure replication competence at a low evolutionary rate compared with other RNA viruses. In the current pandemic, SARS-CoV-2 has accumulated diverse genomic mutations including in nsp14. Here, to clarify whether amino acid substitutions in nsp14 affect the genomic diversity and evolution of SARS-CoV-2, we searched for amino acid substitutions in nature that may interfere with nsp14 function. We found that viruses carrying a proline-to-leucine change at position 203 (P203L) have a high evolutionary rate and that a recombinant SARS-CoV-2 virus with the P203L mutation acquired more diverse genomic mutations than wild-type virus during its replication in hamsters. Our findings suggest that substitutions, such as P203L, in nsp14 may accelerate the genomic diversity of SARS-CoV-2, contributing to virus evolution during the pandemic.
RESUMO
The continuous emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants associated with the adaptive evolution of the virus is prolonging the global coronavirus disease 2019 (COVID-19) pandemic. The modification of neutralizing antibodies based on structural information is expected to be a useful approach to rapidly combat emerging variants. A dimerized variable domain of heavy chain of heavy chain antibody (VHH) P17 that has highly potent neutralizing activity against SARS-CoV-2 has been reported but the mode of interaction with the epitope remains unclear. Here, we report the X-ray crystal structure of the complex of monomerized P17 bound to the SARS-CoV-2 receptor binding domain (RBD) and investigated the binding activity of P17 toward various variants of concern (VOCs) using kinetics measurements. The structure revealed details of the binding interface and showed that P17 had an appropriate linker length to have an avidity effect and recognize a wide range of RBD orientations. Furthermore, we identified mutations in known VOCs that decrease the binding affinity of P17 and proposed methods for the acquisition of affinity toward the Omicron RBD because Omicron is currently the most predominant VOC. This study provides information for the rational design of effective VHHs for emerging VOCs.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Dimerização , Epitopos , Cadeias Pesadas de ImunoglobulinasRESUMO
We are amid the historic coronavirus infectious disease 2019 (COVID-19) pandemic. Imbalances in the accessibility of vaccines, medicines, and diagnostics among countries, regions, and populations, and those in war crises, have been problematic. Nanobodies are small, stable, customizable, and inexpensive to produce. Herein, we present a panel of nanobodies that can detect the spike proteins of five SARS-CoV-2 variants of concern (VOCs) including Omicron. Here we show via ELISA, lateral flow, kinetic, flow cytometric, microscopy, and Western blotting assays that our nanobodies can quantify the spike variants. This panel of nanobodies broadly neutralizes viral infection caused by pseudotyped and authentic SARS-CoV-2 VOCs. Structural analyses show that the P86 clone targets epitopes that are conserved yet unclassified on the receptor-binding domain (RBD) and contacts the N-terminal domain (NTD). Human antibodies rarely access both regions; consequently, the clone buries hidden crevasses of SARS-CoV-2 spike proteins that go undetected by conventional antibodies.
Assuntos
COVID-19 , Anticorpos de Domínio Único , Anticorpos Antivirais , Humanos , Glicoproteínas de Membrana/metabolismo , Testes de Neutralização , SARS-CoV-2/genética , Anticorpos de Domínio Único/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral/metabolismoRESUMO
Low pathogenic H9N2 avian influenza viruses have spread in wild birds and poultry worldwide. Recently, the number of human cases of H9N2 virus infection has increased in China and other countries, heightening pandemic concerns. In Japan, H9N2 viruses are not yet enzootic; however, avian influenza viruses, including H5N1, H7N9, H5N6, and H9N2, have been repeatedly detected in raw poultry meat carried by international flight passengers from Asian countries to Japan. Although H9N2 virus-contaminated poultry products intercepted by the animal quarantine service at the Japan border have been characterized in chickens and ducks, the biological properties of those H9N2 viruses in mammals remain unclear. Here, we characterized the biological features of two H9N2 virus isolates [A/chicken/Japan/AQ-HE28-50/2016 (Ck/HE28-50) and A/chicken/Japan/AQ-HE28-57/2016 (Ck/HE28-57)] in a mouse model. We found that these H9N2 viruses replicate well in the respiratory tract of infected mice without adaptation, and that Ck/HE28-57 caused body weight loss in the infected mice. Our results indicate that H9N2 avian influenza viruses isolated from raw chicken meat products illegally brought to Japan can potentially infect and cause disease in mammals.
Assuntos
Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Doenças das Aves Domésticas , Animais , Galinhas , China , Modelos Animais de Doenças , Vírus da Influenza A Subtipo H9N2/genética , Mamíferos , Camundongos , Filogenia , Aves Domésticas , Produtos AvícolasRESUMO
Reports of post-acute COVID-19 syndrome, in which the inflammatory response persists even after SARS-CoV-2 has disappeared, are increasing1, but the underlying mechanisms of post-acute COVID-19 syndrome remain unknown. Here, we show that SARS-CoV-2-infected cells trigger senescence-like cell-cycle arrest2,3 in neighboring uninfected cells in a paracrine manner via virus-induced cytokine production. In cultured human cells or bronchial organoids, these SASR-CoV-2 infection-induced senescent cells express high levels of a series of inflammatory factors known as senescence-associated secretory phenotypes (SASPs)4 in a sustained manner, even after SARS-CoV-2 is no longer detectable. We also show that the expression of the senescence marker CDKN2A (refs. 5,6) and various SASP factor4 genes is increased in the pulmonary cells of patients with severe post-acute COVID-19 syndrome. Furthermore, we find that mice exposed to a mouse-adapted strain of SARS-CoV-2 exhibit prolonged signs of cellular senescence and SASP in the lung at 14 days after infection when the virus was undetectable, which could be substantially reduced by the administration of senolytic drugs7. The sustained infection-induced paracrine senescence described here may be involved in the long-term inflammation caused by SARS-CoV-2 infection.
Assuntos
COVID-19 , Humanos , Camundongos , Animais , SARS-CoV-2 , Senescência Celular/genética , Pulmão , InflamaçãoRESUMO
Highly pathogenic avian influenza viruses (HPAIVs) with H5 and H7 hemagglutinin (HA) subtypes are derived from their low pathogenic counterparts following the acquisition of multiple basic amino acids in their HA cleavage site. It has been suggested that consecutive adenine residues and a stem-loop structure in the viral RNA region that encodes the cleavage site are essential for the acquisition of the polybasic cleavage site. By using a reporter assay to detect non-templated nucleotide insertions, we found that insertions more frequently occurred in the RNA region (29 nucleotide-length) encoding the cleavage site of an H5 HA gene that was predicted to have a stem-loop structure containing consecutive adenines than in a mutated corresponding RNA region that had a disrupted loop structure with fewer adenines. In virus particles generated by using reverse genetics, nucleotide insertions that created additional codons for basic amino acids were found in the RNA region encoding the cleavage site of an H5 HA gene but not in the mutated RNA region. We confirmed the presence of virus clones with the ability to replicate without trypsin in a plaque assay and to cause lethal infection in chicks. These results demonstrate that the stem-loop structure containing consecutive adenines in HA genes is a key molecular determinant for the emergence of H5 HPAIVs.
RESUMO
We examined the hospital-wide incidence of methicillin-resistant Staphylococcus contamination in a hospital environment to predict the risk of the nosocomial spread of infection. Samples were also taken different surfaces and medical equipment in a general hospital ward and a staff station. The isolates were identified bacterial strains and analyzed by PCR for detection of the mecA gene and staphylococcal cassette chromosome mec (SCCmec) types (I-V). Overall, out of 146 isolates that were screened, 15.7% of the samples in the hospital wards were contaminated with Staphylococcus aureus and 74.7% were isolated with coagulase-negative Staphylococci (CNS). The methicillin-resistant mecA gene was detected in all oxacillin-resistant S. aureus, and 89% of oxacillin-resistant CNS was identified as methicillin-resistant S. aureus (MRSA) and MRCNS respectively. All S. aureus and CNS from the hospital wards with MRSA patients were detected as MRSA and MRCNS. A widespread distribution of MRSA and MRCNS was detected in the Cuff. The majority of the MRSA and MRCNS isolates in this study were SCCmec type V, which are a community-acquired infection type. The increased incidence and prevalence of community-acquired MRSA and MRCNS, as well as hospital-acquired MRSA, should be recognized as serious healthcare problems.
Assuntos
Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Hospitais , Humanos , Japão/epidemiologia , Resistência a Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Staphylococcus/genética , Staphylococcus aureusRESUMO
The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a key role in viral infectivity. It is also the major antigen stimulating the host's protective immune response, specifically, the production of neutralizing antibodies. Recently, a new variant of SARS-CoV-2 possessing multiple mutations in the S protein, designated P.1, emerged in Brazil. Here, we characterized a P.1 variant isolated in Japan by using Syrian hamsters, a well-established small animal model for the study of SARS-CoV-2 disease (COVID-19). In hamsters, the variant showed replicative abilities and pathogenicity similar to those of early and contemporary strains (i.e., SARS-CoV-2 bearing aspartic acid [D] or glycine [G] at position 614 of the S protein). Sera and/or plasma from convalescent patients and BNT162b2 messenger RNA vaccinees showed comparable neutralization titers across the P.1 variant, S-614D, and S-614G strains. In contrast, the S-614D and S-614G strains were less well recognized than the P.1 variant by serum from a P.1-infected patient. Prior infection with S-614D or S-614G strains efficiently prevented the replication of the P.1 variant in the lower respiratory tract of hamsters upon reinfection. In addition, passive transfer of neutralizing antibodies to hamsters infected with the P.1 variant or the S-614G strain led to reduced virus replication in the lower respiratory tract. However, the effect was less pronounced against the P.1 variant than the S-614G strain. These findings suggest that the P.1 variant may be somewhat antigenically different from the early and contemporary strains of SARS-CoV-2.
Assuntos
COVID-19/virologia , SARS-CoV-2/fisiologia , SARS-CoV-2/patogenicidade , Replicação Viral , Animais , Anticorpos Neutralizantes , COVID-19/diagnóstico por imagem , COVID-19/patologia , Cricetinae , Humanos , Imunogenicidade da Vacina , Pulmão/patologia , Mesocricetus , Camundongos , Glicoproteína da Espícula de Coronavírus/genética , Microtomografia por Raio-XRESUMO
The genus Flavivirus includes a range of mosquito-specific viruses in addition to well-known medically important arboviruses. Isolation and comprehensive genomic analyses of viruses in mosquitoes collected in Bolivia resulted in the identification of three novel flavivirus species. Psorophora flavivirus (PSFV) was isolated from Psorophora albigenu. The coding sequence of the PSFV polyprotein shares 60â% identity with that of the Aedes-associated lineage II insect-specific flavivirus (ISF), Marisma virus. Isolated PSFV replicates in both Aedes albopictus- and Aedes aegypti-derived cells, but not in mammalian Vero or BHK-21 cell lines. Two other flaviviruses, Ochlerotatus scapularis flavivirus (OSFV) and Mansonia flavivirus (MAFV), which were identified from Ochlerotatus scapularis and Mansonia titillans, respectively, group with the classical lineage I ISFs. The protein coding sequences of these viruses share only 60 and 40â% identity with the most closely related of known lineage I ISFs, including Xishuangbanna aedes flavivirus and Sabethes flavivirus, respectively. Phylogenetic analysis suggests that MAFV is clearly distinct from the groups of the current known Culicinae-associated lineage I ISFs. Interestingly, the predicted amino acid sequence of the MAFV capsid protein is approximately two times longer than that of any of the other known flaviviruses. Our results indicate that flaviviruses with distinct features can be found at the edge of the Bolivian Amazon basin at sites that are also home to dense populations of human-biting mosquitoes.
Assuntos
Culicidae/virologia , Flavivirus/genética , Flavivirus/isolamento & purificação , Aedes/virologia , Animais , Bolívia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Linhagem Celular , Flavivirus/classificação , Flavivirus/fisiologia , Genoma Viral , Mosquitos Vetores/virologia , Filogenia , Poliproteínas/química , Poliproteínas/genética , RNA Viral/genética , Análise de Sequência de RNA , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/genética , Replicação Viral , Sequenciamento Completo do GenomaRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide since December 2019, causing coronavirus disease 2019 (COVID-19). Although vaccines for this virus have been developed rapidly, repurposing drugs approved to treat other diseases remains an invaluable treatment strategy. Here, we evaluated the inhibitory effects of drugs on SARS-CoV-2 replication in a hamster infection model and in in vitro assays. Favipiravir significantly suppressed virus replication in hamster lungs. Remdesivir inhibited virus replication in vitro, but was not effective in the hamster model. However, GS-441524, a metabolite of remdesivir, effectively suppressed virus replication in hamsters. Co-administration of favipiravir and GS-441524 more efficiently reduced virus load in hamster lungs than did single administration of either drug for both the prophylactic and therapeutic regimens; prophylactic co-administration also efficiently inhibited lung inflammation in the infected animals. Furthermore, pretreatment of hamsters with favipiravir and GS-441524 effectively protected them from virus transmission via respiratory droplets upon exposure to infected hamsters. Repurposing and co-administration of antiviral drugs may help combat COVID-19. IMPORTANCE During a pandemic, repurposing drugs that are approved for other diseases is a quick and realistic treatment option. In this study, we found that co-administration of favipiravir and the remdesivir metabolite GS-441524 more effectively blocked SARS-CoV-2 replication in the lungs of Syrian hamsters than either favipiravir or GS-441524 alone as part of a prophylactic or therapeutic regimen. Prophylactic co-administration also reduced the severity of lung inflammation. Moreover, co-administration of these drugs to naive hamsters efficiently protected them from airborne transmission of the virus from infected animals. Since both drugs are nucleotide analogs that interfere with the RNA-dependent RNA polymerases of many RNA viruses, these findings may also help encourage co-administration of antivirals to combat future pandemics.
Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Mesocricetus , Tratamento Farmacológico da COVID-19 , Pulmão , Antivirais/farmacologiaRESUMO
Fucoidan derivatives 10-13, whose basic sugar chains are composed of repeating α(1,4)-linked l-fucopyranosyl residues with different sulfation patterns, were designed and systematically synthesized. A structure-activity relationship (SAR) study examined competitive inhibition by thirteen fucoidan derivatives against heparin binding to the SARS-CoV-2 spike (S) protein. The results showed for the first time that 10 exhibited the highest inhibitory activity of the fucoidan derivatives used. The inhibitory activity of 10 was much higher than that of fondaparinux, the reported ligand of SARS-CoV-2 S protein. Furthermore, 10 exhibited inhibitory activities against the binding of heparin with several mutant SARS-CoV-2 S proteins, but was found to not inhibit factor Xa (FXa) activity that could otherwise lead to undesirable anticoagulant activity.
RESUMO
At the end of 2019, a novel coronavirus (severe acute respiratory syndrome coronavirus 2; SARS-CoV-2) was detected in Wuhan, China, that spread rapidly around the world, with severe consequences for human health and the global economy. Here, we assessed the replicative ability and pathogenesis of SARS-CoV-2 isolates in Syrian hamsters. SARS-CoV-2 isolates replicated efficiently in the lungs of hamsters, causing severe pathological lung lesions following intranasal infection. In addition, microcomputed tomographic imaging revealed severe lung injury that shared characteristics with SARS-CoV-2-infected human lung, including severe, bilateral, peripherally distributed, multilobular ground glass opacity, and regions of lung consolidation. SARS-CoV-2-infected hamsters mounted neutralizing antibody responses and were protected against subsequent rechallenge with SARS-CoV-2. Moreover, passive transfer of convalescent serum to naïve hamsters efficiently suppressed the replication of the virus in the lungs even when the serum was administrated 2 d postinfection of the serum-treated hamsters. Collectively, these findings demonstrate that this Syrian hamster model will be useful for understanding SARS-CoV-2 pathogenesis and testing vaccines and antiviral drugs.
Assuntos
Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Pulmão/patologia , Pneumonia Viral/virologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Betacoronavirus/patogenicidade , Betacoronavirus/fisiologia , COVID-19 , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/patologia , Infecções por Coronavirus/terapia , Cricetinae , Humanos , Imunização Passiva , Pulmão/diagnóstico por imagem , Pulmão/virologia , Mesocricetus , Pandemias , Pneumonia Viral/patologia , Ribonucleoproteínas/química , SARS-CoV-2 , Células Vero , Proteínas Virais/química , Replicação Viral , Soroterapia para COVID-19RESUMO
Ebola virus disease is a severe disease, often fatal, with a mortality rate of up to 90%. Presently, effective treatment and safe prevention options for Ebola virus disease are not available. Therefore, there is an urgent need to develop control measures to prevent or limit future Ebola virus outbreaks. Ebola virus protein-based virus-like particle (VLP) and inactivated whole virion vaccines have demonstrated efficacy in animal models, and the addition of appropriate adjuvants may provide additional benefits to these vaccines, including enhanced immune responses. In this study, we screened 24 compounds from injectable excipients approved for human use in Japan and identified six compounds that significantly enhanced the humoral response to Ebola VLP vaccine in a murine model. Our novel adjuvant candidates for Ebola VLP vaccine have already been demonstrated to be safe when administered intramuscularly or subcutaneously, and therefore, they are closer to clinical trials than adjuvants whose safety profiles are unknown.