Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Oecologia ; 196(1): 263-273, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33891170

RESUMO

To investigate the effect of reduced snow cover on fine root dynamics in a cool-temperate forest in northern Japan because of decreases in snowfall at high latitudes due to global warming, we monitored root length, production, and mortality before and after snow removal with an in-ground root scanner. We measured root dynamics of both overstory deciduous oak (Quercus crispula) and understory evergreen dwarf bamboo (Sasa nipponica), the two major species in the forest. Snow removal advanced the timing of peak root production by a month both in total and in Sasa, but not in oak. There was a significant interaction between snow removal and plant form on root production; this indicates that enhanced Sasa root production following snow removal might increase its ability to compete with oak. In contrast, snow removal did not enhance root mortality, suggesting that the roots of these species tolerate soil freezing. The earlier snow disappearance in the snow removal plot expanded the growing season in Sasa. We speculate that this change in the understory environment would advance the timing of root production by Sasa by extending the photosynthetic period in spring. We propose that different responses of root production to reduced snow cover between the two species would change the competitive interactions of overstory and understory vegetation, influencing net primary production and biogeochemistry (e.g., carbon and nitrogen cycles) in the forest ecosystem.


Assuntos
Ecossistema , Neve , Mudança Climática , Florestas , Japão , Estações do Ano , Solo
2.
Plants (Basel) ; 5(2)2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27135238

RESUMO

In forest ecosystems, a change of soil nitrogen (N) cycling after disturbance is regulated by various factors. Sasa dwarf bamboo (hereafter referred to as Sasa) is an understory plant that grows thickly on the forest floor in northern Hokkaido, Japan. However, the ecosystem function of Sasa after disturbances in the soil N cycling is not fully understood. The purpose of this study was to determine the short-term response of Sasa to a change of soil N fertility. Biomass, litterfall, litter decomposition, soil N pool, and N leaching from soil were measured in control, and low- (5 g N m(-2) year(-1)) and high-N (15 g N m(-2) year(-1)) addition plots. Sasa immobilized much N as the soil N fertility increased. However, the leaf N concentration in aboveground biomass did not increase, suggesting that the N in leaves was maintained because of the increase of leaf biomass. As a result, the decomposition and mineralization rates of the produced litter before and after N addition were comparable among plots, even though the soil inorganic N fertility increased greatly. These results suggest that immediate response of Sasa to an increase of soil inorganic N mitigates the excess N leaching from soil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA