Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Chem Pharm Bull (Tokyo) ; 72(4): 360-364, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38569844

RESUMO

Batrachotoxin (1) is a potent cardio- and neurotoxic steroid isolated from certain species of frogs, birds, and beetles. We previously disclosed two synthetic routes to 1. During our synthetic studies toward 1, we explored an alternative strategy for efficiently assembling its 6/6/6/5-membered steroidal skeleton (ABCD-ring). Here we report the application of intermolecular Weix and intramolecular pinacol coupling reactions. While Pd/Ni-promoted Weix coupling linked the AB-ring and D-ring fragments, SmI2-mediated pinacol coupling did not cyclize the C-ring. Instead, we discovered that SmI2 promoted a 1,4-addition of the α-alkoxy radical intermediate to produce the unusual 11(9→7)-abeo-steroid skeleton. Thus, this study demonstrates the convergent assembly of the skeleton of the natural product matsutakone in 11 steps from 2-allyl-3-hydroxycyclopent-2-en-1-one.


Assuntos
Batraquiotoxinas , Glicóis , Iodetos , Samário , Compostos Radiofarmacêuticos , Esqueleto
2.
J Org Chem ; 88(24): 17479-17484, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38051654

RESUMO

Batrachotoxin (1), originally isolated from a Columbian poison-dart frog, is a steroidal alkaloid. Its 6/6/6/5-membered carbocycle (ABCD-ring) contains two double bonds, one nitrogen, and five oxygen functionalities. We developed a radical-based convergent strategy and realized the total synthesis of 1 in 28 steps. The AB-ring and D-ring fragments were efficiently synthesized and linked by exploiting a powerful Et3B/O2-mediated radical coupling reaction. Vinyl triflate and vinyl bromide were then utilized for a Pd/Ni-promoted Weix coupling reaction to cyclize the C-ring. A hydroxy group of the C-ring was stereoselectively installed by a decarboxylative hydroxylation reaction to prepare an advanced intermediate of our previous total synthesis of 1.

3.
Angew Chem Int Ed Engl ; 62(40): e202309688, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37582693

RESUMO

Batrachotoxin is an extremely potent cardio- and neurotoxic steroidal alkaloid found in certain species of frogs, birds, and beetles. The steroidal 6/6/6/5-membered carbocycle (ABCD-ring) is U-shaped and functionalized with two double bonds, a six-membered C3-hemiacetal across the AB-ring, a seven-membered oxazepane on the CD-ring, and a dimethylpyrrolecarboxy group at the D-ring carbon chain. These structural features present an unusual and formidable synthetic challenge. Herein we report a total synthesis of batrachotoxin based on a newly devised convergent strategy through a 22-step sequence. Enantiopure AB-ring and D-ring fragments were prepared and subjected to a crucial C(sp2 )-C(sp2 ) coupling reaction. Although both C(sp2 ) centers were sterically encumbered by proximal tetrasubstituted carbon atoms, Ag2 O strongly promoted the Pd(PPh3 )4 -catalyzed Suzuki-Miyaura coupling reaction at room temperature, thereby connecting the two fragments without damaging their preexisting functionalities. Subsequent treatment with t-BuOK induced Dieckmann condensation to cyclize the C-ring. The judiciously optimized functionalizations realized oxazepane formation, carbon chain extension, and pyrrole carboxylic acid condensation to deliver batrachotoxin.

5.
Nat Commun ; 14(1): 2054, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045817

RESUMO

Environmental temperature affects physiological functions, representing a barrier for the range expansions of ectothermic species. To understand the link between thermal physiology and biogeography, a key question is whether among-species thermal sensitivity of metabolic rates is mechanistically constrained or buffered through physiological remodeling over evolutionary time. The former conception, the Universal Temperature Dependence hypothesis, predicts similar among- and within-species thermal sensitivity. The latter conception, the Metabolic Cold Adaptation hypothesis, predicts lower among-species thermal sensitivity than within-species sensitivity. Previous studies that tested these hypotheses for fishes overwhelmingly investigated teleosts with elasmobranchs understudied. Here, we show that among-species thermal sensitivity of resting metabolic rates is lower than within-species sensitivity in teleosts but not in elasmobranchs. Further, species richness declines with latitude more rapidly in elasmobranchs than in teleosts. Metabolic Cold Adaptation exhibited by teleosts might underpin their high diversity at high latitudes, whereas the inflexible thermal sensitivity approximated by Universal Temperature Dependence of elasmobranchs might explain their low diversity at high latitudes.


Assuntos
Elasmobrânquios , Animais , Peixes/metabolismo , Temperatura
6.
Immun Ageing ; 20(1): 8, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788556

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is age-related disease, and decreased renal function is associated with the premature aging of T cells and increased incidence of other age-related diseases. However, the relationship between T cell senescence and CKD progression remains unclear. Here, we investigated the relationship between T cell senescence, as indicated by decreased thymic output and increased proportion of highly differentiated CD28- T cells, and CKD progression. RESULTS: A total of 175 patients with non-dialysis-dependent CKD were enrolled in this study. Thymic output was assessed based on the CD45RA+CD31+CD4+ cell (recent thymic emigrant [RTE]) counts (RTEs) (/mm3) and the proportion of RTE among CD4+ T cells (RTE%). Highly differentiated T cells were assessed based on the proportion of CD28- cells among CD4+ T cells (CD28-/CD4+) and CD28- cells among CD8+ T cells (CD28-/CD8+). The primary outcome was estimated glomerular filtration rate (eGFR) decline of ≥40% or initiation of renal replacement therapy. The association between T cell senescence and renal outcomes was examined using Cox proportional hazards models and restricted cubic splines. The median age was 73 years, 33% were women, and the median eGFR was 26 mL/min/1.73 m2. The median RTEs, RTE%, CD28-/CD4+, and CD28-/CD8+ were 97.5/mm3, 16.2, 5.3, and 49.7%, respectively. After a median follow-up of 1.78 years, renal outcomes were observed in 71 patients. After adjusting for age, sex, eGFR, proteinuria, diabetes, and cytomegalovirus seropositivity, decreased RTEs, which corresponded to decreased thymic output, significantly and monotonically increased the risk of poor renal outcome (p = 0.04), and decreased RTE% and increased highly differentiated CD28-/CD4+ T cells also tended to monotonically increase the risk (p = 0.074 and p = 0.056, respectively), but not CD28-/CD8+ T cells. CONCLUSIONS: Decreased thymic output in CKD patients, as well as increased highly differentiated CD4+ T cells, predicted renal outcomes. Thus, the identification of patients prone to CKD progression using T cell senescence, particularly decreased RTE as a biomarker, may help to prevent progression to end-stage kidney disease.

7.
Annu Rev Anim Biosci ; 11: 247-267, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36790885

RESUMO

Addressing important questions in animal ecology, physiology, and environmental science often requires in situ information from wild animals. This difficulty is being overcome by biologging and biotelemetry, or the use of miniaturized animal-borne sensors. Although early studies recorded only simple parameters of animal movement, advanced devices and analytical methods can now provide rich information on individual and group behavior, internal states, and the surrounding environment of free-ranging animals, especially those in marine systems. We summarize the history of technologies used to track marine animals. We then identify seven major research categories of marine biologging and biotelemetry and explain significant achievements, as well as future opportunities. Big data approaches via international collaborations will be key to tackling global environmental issues (e.g., climate change impacts), and curiosity about the secret lives of marine animals will also remain a major driver of biologging and biotelemetry studies.


Assuntos
Sistemas de Identificação Animal , Organismos Aquáticos , Telemetria , Animais , Monitoramento Ambiental
8.
Biol Open ; 11(6)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35686686

RESUMO

Gestation periods vary greatly across elasmobranch species. Differences in body size and body temperature (i.e. major determinants of metabolic rates) might explain such variation. Although temperature effects have been demonstrated for captive animals, body size effects remain undocumented. Moreover, whether metabolic rates of mothers or those of embryos affect gestation periods remains unclear. Because biological times generally scale with mass1-ß, where ß is metabolic scaling exponent (0.8-0.9 in fishes), we hypothesized that elasmobranch gestation periods would scale with mass0.1-0.2. We also hypothesized that regionally endothermic species with elevated metabolic rates should have shorter gestation periods than similar-sized ectothermic species if the metabolic rates of mothers are responsible. We compiled data on gestation periods for 36 elasmobranch species to show that gestation periods scale with M0.11 and m0.17, where M and m are adult female mass and birth mass, respectively. Litter size and body temperature also affected gestation periods. Our findings suggest that the body-mass dependence of metabolic rate explains some variations in elasmobranch gestation periods. Unexpectedly, regionally endothermic sharks did not have shorter gestation periods than their ectothermic counterparts, suggesting that the metabolic rates of embryos, which are likely ectothermic in all elasmobranch species, may be responsible. This article has an associated First Person interview with the first author of the paper.


Assuntos
Peixes , Tubarões , Animais , Peso Corporal , Feminino , Humanos , Gravidez , Tubarões/metabolismo
9.
Elife ; 112022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35258454

RESUMO

Body-motion sensors can be used to study non-invasively how animals sleep in the wild, opening up exciting opportunities for comparative analyses across species.


Assuntos
Relações Interpessoais , Sono , Acelerometria , Animais , Homeostase , Sono/fisiologia
10.
J Exp Biol ; 225(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35258589

RESUMO

Field metabolic rate (FMR) is a holistic measure of metabolism representing the routine energy utilization of a species living within a specific ecological context, thus providing insight into its ecology, fitness and resilience to environmental stressors. For animals that cannot be easily observed in the wild, FMR can also be used in concert with dietary data to quantitatively assess their role as consumers, improving understanding of the trophic linkages that structure food webs and allowing for informed management decisions. Here, we modelled the FMR of Greenland sharks (Somniosus microcephalus) equipped with biologger packages or pop-up archival satellite tags (PSATs) in two coastal inlets of Baffin Island (Nunavut) using metabolic scaling relationships for mass, temperature and activity. We estimated that Greenland sharks had an overall mean (±s.d.) FMR of 21.67±2.30 mg O2 h-1 kg-0.84 (n=30; 1-4 day accelerometer package deployments) while residing inside these cold-water fjord systems in the late summer, and 25.48±0.47 mg O2 h-1 kg-0.84 (n=6; PSATs) over an entire year. When considering prey consumption rate, an average shark in these systems (224 kg) requires a maintenance ration of 61-193 g of fish or marine mammal prey daily. As Greenland sharks are a lethargic polar species, these low FMR estimates, and corresponding prey consumption estimates, suggest they require very little energy to sustain themselves under natural conditions. These data provide the first characterization of the energetics and consumer role of this vulnerable and understudied species in the wild, which is essential given growing pressures from climate change and expanding commercial fisheries in the Arctic.


Assuntos
Tubarões , Animais , Regiões Árticas , Cação (Peixe) , Pesqueiros , Cadeia Alimentar , Groenlândia , Mamíferos , Tubarões/metabolismo
11.
Exp Cell Res ; 413(2): 113079, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35202674

RESUMO

Signal transducer and activator of transcription 3 (STAT3) plays key roles in cancer cell proliferation, invasion, and immunosuppression. In many human cancer cells, STAT3 is hyperactivated, which leads to tumor progression and drug resistance, and therefore STAT3 and its modulators are considered effective drug targets. However, the complex regulatory mechanisms of STAT3 have made it difficult to develop potent anticancer drugs that suppress its activity. Here, we report serum and glucocorticoid-regulated kinase 1 (SGK1) as a novel regulator of STAT3 signaling and an effective target for combination therapy with Janus kinase (JAK) inhibitors. We screened small molecules using a gain-of-function mutant of STAT3 resistant to JAK inhibition and found that an SGK1 inhibitor suppressed the constitutive activation of STAT3. Importantly, our results revealed that SGK1 also mediated the activation of wild-type STAT3. Further examination suggested that the tuberous sclerosis complex 2 and mammalian target of rapamycin signaling pathway were involved in STAT3 activation by SGK1. Finally, we demonstrated that SGK1 inhibition enhanced the inhibitory effect of a JAK inhibitor on STAT3 phosphorylation and cancer cell proliferation. Our findings provide new insights into the molecular mechanisms of STAT3 activation and suggest SGK1 as a potential target for STAT3-targeted combination cancer therapy.


Assuntos
Proteínas Imediatamente Precoces , Neoplasias , Proteínas Serina-Treonina Quinases , Fator de Transcrição STAT3 , Linhagem Celular Tumoral , Humanos , Proteínas Imediatamente Precoces/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
12.
Sci Rep ; 11(1): 21934, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753959

RESUMO

Satellite-tracking of adult bumphead sunfish, Mola alexandrini, revealed long-distance latitudinal migration patterns covering thousands of kilometers. Horizontal and vertical movements of four bumphead sunfish off Taiwan were recorded with pop-up satellite archival tags in 2019-2020. Two individuals moved northward and traveled to Okinawa Island and Kyushu, Japan and two moved southwards; crossing the equator, to Papua New Guinea and New Caledonia. During daytime, bumphead sunfish descended below the thermocline and ascended to mixed layer depths (MLD) during nighttime. The N-S migrants, however, demonstrated different habitat utilization patterns. Instead of using prevailing currents, the northward movements of sunfish cohorts exhibited extensive use of mesoscale eddies. Fish in anticyclonic eddies usually occupied deeper habitats whereas those in cyclonic eddies used near-surface habitats. On northward excursions, fish spent most of their time in regions with high dissolved oxygen concentrations. Southward movement patterns were associated with major currents and thermal stratification of the water column. In highly stratified regions, fish stayed below the thermocline and frequently ascended to MLD during daytime either to warm muscles or repay oxygen debts. These results for bumphead sunfish present important insights into different habitat use patterns and the ability to undergo long-distance migrations over varying spatial-temporal scales and features.


Assuntos
Migração Animal , Ecossistema , Tetraodontiformes/fisiologia , Animais , Oxigênio/análise , Oceano Pacífico
13.
Mar Biol ; 168(11): 161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34703062

RESUMO

Large pelagic fishes often dive and surface repeatedly as if they were airbreathers, raising a question about the functions of these movements. Some species (e.g., bigeye tuna, ocean sunfish) apparently alternate foraging in deep cold waters and rewarming in shallow warm waters. However, it is unclear how prevalent this pattern is among species. Blue sharks are the widest-ranging pelagic shark with expanded vertical niches, providing a model for studying foraging-thermoregulation associations. We used electronic tags, including video cameras, to record the diving behaviour, muscle temperature, and foraging events of two blue sharks. During repeated deep dives (max. 422 m), muscle temperature changed more slowly than ambient water temperature. Sharks shifted between descents and ascents before muscle temperature reached ambient temperature, leading to a narrower range (8 °C) of muscle temperature than ambient temperature (20 °C). 2.5-h video footage showed a shark catching a squid, during which a burst swimming event was recorded. Similar swimming events, detected from the entire tag data (20 - 22 h), occurred over a wide depth range (5 - 293 m). We conclude that, instead of alternating foraging and rewarming, blue sharks at our study site forage and thermoregulate continuously in the water column. Furthermore, our comparative analyses showed that the heat exchange rates of blue sharks during the warming and cooling process were not exceptional among fishes for their body size. Thus, behavioural thermoregulation linked to foraging, rather than enhanced abilities to control heat exchange rates, is likely key to the expanded thermal niches of this ectothermic species. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00227-021-03971-3.

14.
J Exp Biol ; 224(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34232316

RESUMO

Wild animals are under selective pressure to optimise energy budgets; therefore, quantifying energy expenditure, intake and allocation to specific activities is important if we are to understand how animals survive in their environment. One approach toward estimating energy budgets has involved measuring oxygen consumption rates under controlled conditions and constructing allometric relationships across species. However, studying 'giant' marine vertebrates (e.g. pelagic sharks, whales) in this way is logistically difficult or impossible. An alternative approach involves the use of increasingly sophisticated electronic tags that have allowed recordings of behaviour, internal states and the surrounding environment of marine animals. This Review outlines how we could study the energy expenditure and intake of free-living ocean giants using this 'biologging' technology. There are kinematic, physiological and theoretical approaches for estimating energy expenditure, each of which has merits and limitations. Importantly, tag-derived energy proxies can hardly be validated against oxygen consumption rates for giant species. The proxies are thus qualitative, rather than quantitative, estimates of energy expenditure, and have more limited utilities. Despite this limitation, these proxies allow us to study the energetics of ocean giants in their behavioural context, providing insight into how these animals optimise their energy budgets under natural conditions. We also outline how information on energy intake and foraging behaviour can be gained from tag data. These methods are becoming increasingly important owing to the natural and anthropogenic environmental changes faced by ocean giants that can alter their energy budgets, fitness and, ultimately, population sizes.


Assuntos
Tubarões , Animais , Animais Selvagens , Metabolismo Energético , Oceanos e Mares , Consumo de Oxigênio
15.
Sci Rep ; 10(1): 19297, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168918

RESUMO

Metabolic rate is intricately linked to the ecology of organisms and can provide a framework to study the behaviour, life history, population dynamics, and trophic impact of a species. Acquiring measures of metabolic rate, however, has proven difficult for large water-breathing animals such as sharks, greatly limiting our understanding of the energetic lives of these highly threatened and ecologically important fish. Here, we provide the first estimates of resting and active routine metabolic rate for the longest lived vertebrate, the Greenland shark (Somniosus microcephalus). Estimates were acquired through field respirometry conducted on relatively large-bodied sharks (33-126 kg), including the largest individual shark studied via respirometry. We show that despite recording very low whole-animal resting metabolic rates for this species, estimates are within the confidence intervals predicted by derived interspecies allometric and temperature scaling relationships, suggesting this species may not be unique among sharks in this respect. Additionally, our results do not support the theory of metabolic cold adaptation which assumes that polar species maintain elevated metabolic rates to cope with the challenges of life at extreme cold temperatures.


Assuntos
Cadeia Alimentar , Oxigênio/metabolismo , Respiração , Tubarões/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Regiões Árticas , Canadá , Ecologia , Monitoramento Ambiental , Feminino , Masculino , Temperatura
16.
Proc Natl Acad Sci U S A ; 117(49): 31242-31248, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33199633

RESUMO

Understanding what, how, and how often apex predators hunt is important due to their disproportionately large effects on ecosystems. In Lake Baikal with rich endemic fauna, Baikal seals appear to eat, in addition to fishes, a tiny (<0.1 g) endemic amphipod Macrohectopus branickii (the world's only freshwater planktonic species). Yet, its importance as prey to seals is unclear. Globally, amphipods are rarely targeted by single-prey feeding (i.e., nonfilter-feeding) mammals, presumably due to their small size. If M. branickii is energetically important prey, Baikal seals would exhibit exceptionally high foraging rates, potentially with behavioral and morphological specializations. Here, we used animal-borne accelerometers and video cameras to record Baikal seal foraging behavior. Unlike the prevailing view that they predominantly eat fishes, they also hunted M. branickii at the highest rates (mean, 57 individuals per dive) ever recorded for single-prey feeding aquatic mammals, leading to thousands of catches per day. These rates were achieved by gradual changes in dive depth following the diel vertical migration of M. branickii swarms. Examining museum specimens revealed that Baikal seals have the most specialized comb-like postcanine teeth in the subfamily Phocinae, allowing them to expel water while retaining prey during high-speed foraging. Our findings show unique mammal-amphipod interactions in an ancient lake, demonstrating that organisms even smaller than krill can be important prey for single-prey feeding aquatic mammals if the environment and predators' adaptations allow high foraging rates. Further, our finding that Baikal seals directly eat macroplankton may explain why they are so abundant in this ultraoligotrophic lake.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Comportamento Alimentar/fisiologia , Focas Verdadeiras/fisiologia , Anfípodes/fisiologia , Animais , Peixes/fisiologia , Lagos , Sibéria
17.
Sci Adv ; 6(26): eaba4828, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32637612

RESUMO

Population trends and breeding success variability of Adélie penguins, a bioindicator of Antarctic environments, have been attributed to changing sea-ice extents; however, causative mechanisms remain unclear. By electronically tagging 175 penguins in four seasons with contrasting sea-ice conditions, we show that ice-free environments enhance, not deteriorate, foraging efficiencies and breeding success. In an ice-free season, penguins traveled by swimming rather than walking, leading to larger foraging areas, shorter trip durations, and lower energy expenditure than three ice-covered seasons. Freed from the need to find cracks for breathing, dive durations decreased, and more krill were captured per unit dive time, which may also be associated with phytoplankton blooms and increased krill density in the sunlit ice-free water. Consequently, adult body mass, chick growth rates, and breeding success increased. Our findings explain the regional population trends and demonstrate a key link among sea ice, foraging behavior, and reproductive success in this iconic species.

18.
J Anim Ecol ; 89(1): 146-160, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31778207

RESUMO

Interactions between animals structure food webs and regulate ecosystem function and productivity. Quantifying subsurface behavioural interactions among marine organisms is challenging, but technological advances are promoting novel opportunities. Here, we present a framework to estimate when there is a high likelihood that aquatic animal subsurface interactions occur and test for a movement-related behavioural response to those interactions over short temporal scales (days) using a novel multi-sensor biologging package on a large marine predator, the Greenland shark (Somniosus microcephalus). We deployed a recoverable biologging package combining a VEMCO Mobile Transceiver (VMT), accelerometer and a temperature-depth tag to quantitatively assess fine-scale behaviour during detection events, that is when sharks carrying the novel VMT package (animalR , n = 3) detected sharks independently tagged with transmitters in the system (animalT , n = 29). Concurrently, we developed simulations to estimate the distances between animalR and animalT by accounting for their swim speed, the estimated detection efficiency of the VMT and the number of consecutive transmissions recorded. Accelerometer-derived activity indices were then used as a means to test for response to potential interactions when animals are expected to be in close proximity. Based on this approach, the three VMT-equipped Greenland sharks exhibited higher body acceleration and greater depth changes during detections, suggesting a potential behavioural response to the presence of other sharks. A generalized additive model indicated a moderate increasing relationship in activity associated with a greater number of animalT detections. Through the proposed framework, detection events with varying probabilities of interaction likelihoods can be derived and those data isolated and explicitly tested using acceleration data to quantify behavioural interactions. Through inputting known parameters for a species of interest, the framework presented is applicable for all aquatic taxa and can guide future study design.


Assuntos
Ecossistema , Tubarões , Acelerometria , Acústica , Animais , Probabilidade , Telemetria
19.
J Fish Biol ; 95(4): 992-998, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31187501

RESUMO

We compiled historical reports of megamouth sharks Megachasma pelagios (mostly fishery by-catch and strandings) from 1976 to 2018 (n = 117) and found that they are distributed globally (highest latitude, 36°) with three hotspots: Japan, Taiwan and the Philippines. Despite possible biases due to variability in fishing effort, more individuals were reported at higher latitudes in the summer, suggesting seasonal, latitudinal migrations. Sex ratios were female-biased in Japan, but more even in Taiwan and the Philippines, suggesting some sexual segregation. Females (total length, LT = 3.41-7.10 m) were larger than males (LT = 1.77-5.39 m) and matured at a larger LT (5.17 m) than males (4.26 m). Also, we reviewed the systematics, feeding ecology and swimming behaviour of Megachasma pelagios based on the literature. Our review shows that, compared with their morphology, anatomy and genetics, behavioural ecology of this species remains largely unknown and electronic tagging studies are warranted.


Assuntos
Tamanho Corporal , Tubarões/anatomia & histologia , Distribuição Animal , Migração Animal , Animais , Estações do Ano , Tubarões/genética , Tubarões/fisiologia
20.
J Exp Biol ; 222(Pt 4)2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777873

RESUMO

Some fishes and sea turtles are distinct from ectotherms by having elevated core body temperatures and metabolic rates. Quantifying the energetics and activity of the regionally endothermic species will help us understand how a fundamental biophysical process (i.e. temperature-dependent metabolism) shapes animal ecology; however, such information is limited owing to difficulties in studying these large, highly active animals. White sharks, Carcharodon carcharias, are the largest fish with regional endothermy, and potentially among the most energy-demanding fishes. Here, we deployed multi-sensor loggers on eight white sharks aggregating near colonies of long-nosed fur seals, Arctocephalus forsteri, off the Neptune Islands, Australia. Simultaneous measurements of depth, swim speed (a proxy for swimming metabolic rate) and body acceleration (indicating when sharks exhibited energy-efficient gliding behaviour) revealed their fine-scale swimming behaviour and allowed us to estimate their energy expenditure. Sharks repeatedly dived (mean swimming depth, 29 m) and swam at the surface between deep dives (maximum depth, 108 m). Modal swim speeds (0.80-1.35 m s-1) were slower than the estimated speeds that minimize cost of transport (1.3-1.9 m s-1), a pattern analogous to a 'sit-and-wait' strategy for a perpetually swimming species. All but one shark employed unpowered gliding during descents, rendering deep (>50 m) dives 29% less costly than surface swimming, which may incur additional wave drag. We suggest that these behavioural strategies may help sharks to maximize net energy gains by reducing swimming cost while increasing encounter rates with fast-swimming seals.


Assuntos
Metabolismo Energético , Tubarões/fisiologia , Natação , Animais , Feminino , Masculino , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA