Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neuroendocrinology ; 113(9): 915-923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36907174

RESUMO

INTRODUCTION: Small intestinal neuroendocrine tumours (siNETs) are rare neoplasms which present with low mutational burden and can be subtyped based on copy number variation (CNV). Currently, siNETs can be molecularly classified as having chromosome 18 loss of heterozygosity (18LOH), multiple CNVs (MultiCNV), or no CNVs. 18LOH tumours have better progression-free survival when compared to MultiCNV and NoCNV tumours, however, the mechanism underlying this is unknown, and clinical practice does not currently consider CNV status. METHODS: Here, we use genome-wide tumour DNA methylation (n = 54) and gene expression (n = 20 matched to DNA methylation) to better understand how gene regulation varies by 18LOH status. We then use multiple cell deconvolution methods to analyse how cell composition varies between 18LOH status and determine potential associations with progression-free survival. RESULTS: We identified 27,464 differentially methylated CpG sites and 12 differentially expressed genes between 18LOH and non-18LOH (MultiCNV + NoCNV) siNETs. Although few differentially expressed genes were identified, these genes were highly enriched with the differentially methylated CpG sites compared to the rest of the genome. We identified differences in tumour microenvironment between 18LOH and non-18LOH tumours, including CD14+ infiltration in a subset of non-18LOH tumours which had the poorest clinical outcomes. CONCLUSIONS: We identify a small number of genes which appear to be linked to the 18LOH status of siNETs, and find evidence of potential epigenetic dysregulation of these genes. We also find a potential prognostic marker for worse progression-free outcomes in the form of higher CD14 infiltration in non-18LOH siNETs.


Assuntos
Neoplasias Intestinais , Tumores Neuroendócrinos , Humanos , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Multiômica , Variações do Número de Cópias de DNA/genética , Cromossomos Humanos Par 18 , Neoplasias Intestinais/genética , Metilação de DNA/genética , Perda de Heterozigosidade/genética , Microambiente Tumoral
2.
Int J Epidemiol ; 52(5): 1377-1387, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36952292

RESUMO

BACKGROUND/OBJECTIVES: Different genetic variants are associated with larger body size in childhood vs adulthood. Whether and when these variants predominantly influence adiposity are unknown. We examined how genetic variants influence total body fat and total lean mass trajectories. METHODS: Data were from the Avon Longitudinal Study of Parents and Children birth cohort (N = 6926). Sex-specific genetic risk scores (GRS) for childhood and adulthood body size were generated, and dual-energy X-ray absorptiometry scans measured body fat and lean mass six times between the ages of 9 and 25 years. Multilevel linear spline models examined associations of GRS with fat and lean mass trajectories. RESULTS: In males, the sex-specific childhood and adulthood GRS were associated with similar differences in fat mass from 9 to 18 years; 8.3% [95% confidence interval (CI) 5.1, 11.6] and 7.5% (95% CI 4.3, 10.8) higher fat mass at 18 years per standard deviation (SD) higher childhood and adulthood GRS, respectively. In males, the sex-combined childhood GRS had stronger effects at ages 9 to 15 than the sex-combined adulthood GRS. In females, associations for the sex-specific childhood GRS were almost 2-fold stronger than the adulthood GRS from 9 to 18 years: 10.5% (95% CI 8.5, 12.4) higher fat mass at 9 years per SD higher childhood GRS compared with 5.1% (95% CI 3.2, 6.9) per-SD higher adulthood GRS. In females, the sex-combined GRS had similar effects, with slightly larger effect estimates. Lean mass effect sizes were much smaller. CONCLUSIONS: Genetic variants for body size are more strongly associated with adiposity than with lean mass. Sex-combined childhood variants are more strongly associated with increased adiposity until early adulthood. This may inform future studies that use genetics to investigate the causes and impact of adiposity at different life stages.


Assuntos
Predisposição Genética para Doença , Acontecimentos que Mudam a Vida , Masculino , Criança , Feminino , Humanos , Adolescente , Adulto Jovem , Adulto , Estudos Longitudinais , Estudos Prospectivos , Índice de Massa Corporal , Obesidade/genética , Tecido Adiposo , Adiposidade/genética , Tamanho Corporal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA