Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 8176, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160601

RESUMO

Ampk is an energy gatekeeper that responds to decreases in ATP by inhibiting energy-consuming anabolic processes and promoting energy-generating catabolic processes. Recently, we showed that Lkb1, an understudied kinase in B lymphocytes and a major upstream kinase for Ampk, had critical and unexpected roles in activating naïve B cells and in germinal center formation. Therefore, we examined whether Lkb1 activities during B cell activation depend on Ampk and report surprising Ampk activation with in vitro B cell stimulation in the absence of energy stress, coupled to rapid biomass accumulation. Despite Ampk activation and a controlling role for Lkb1 in B cell activation, Ampk knockout did not significantly affect B cell activation, differentiation, nutrient dynamics, gene expression, or humoral immune responses. Instead, Ampk loss specifically repressed the transcriptional expression of IgD and its regulator, Zfp318. Results also reveal that early activation of Ampk by phenformin treatment impairs germinal center formation but does not significantly alter antibody responses. Combined, the data show an unexpectedly specific role for Ampk in the regulation of IgD expression during B cell activation.


Assuntos
Linfócitos B/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Imunoglobulina D/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Trifosfato de Adenosina/metabolismo , Anabolizantes/farmacologia , Animais , Linfócitos B/metabolismo , Proteína Receptora de AMP Cíclico/efeitos dos fármacos , Proteína Receptora de AMP Cíclico/genética , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Centro Germinativo/efeitos dos fármacos , Células HeLa , Humanos , Metabolômica , Fenformin/farmacologia
2.
iScience ; 5: 99-109, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30240649

RESUMO

B lymphocytes provide adaptive immunity by generating antigen-specific antibodies and supporting the activation of T cells. Little is known about how global metabolism supports naive B cell activation to enable an effective immune response. By coupling RNA sequencing (RNA-seq) data with glucose isotopomer tracing, we show that stimulated B cells increase programs for oxidative phosphorylation (OXPHOS), the tricarboxylic acid (TCA) cycle, and nucleotide biosynthesis, but not glycolysis. Isotopomer tracing uncovered increases in TCA cycle intermediates with almost no contribution from glucose. Instead, glucose mainly supported the biosynthesis of ribonucleotides. Glucose restriction did not affect B cell functions, yet the inhibition of OXPHOS or glutamine restriction markedly impaired B cell growth and differentiation. Increased OXPHOS prompted studies of mitochondrial dynamics, which revealed extensive mitochondria remodeling during activation. Our results show how B cell metabolism adapts with stimulation and reveals unexpected details for carbon utilization and mitochondrial dynamics at the start of a humoral immune response.

4.
EMBO Rep ; 16(6): 753-68, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25916856

RESUMO

T-cell-dependent antigenic stimulation drives the differentiation of B cells into antibody-secreting plasma cells and memory B cells, but how B cells regulate this process is unclear. We show that LKB1 expression in B cells maintains B-cell quiescence and prevents the premature formation of germinal centers (GCs). Lkb1-deficient B cells (BKO) undergo spontaneous B-cell activation and secretion of multiple inflammatory cytokines, which leads to splenomegaly caused by an unexpected expansion of T cells. Within this cytokine response, increased IL-6 production results from heightened activation of NF-κB, which is suppressed by active LKB1. Secreted IL-6 drives T-cell activation and IL-21 production, promoting T follicular helper (TFH ) cell differentiation and expansion to support a ~100-fold increase in steady-state GC B cells. Blockade of IL-6 secretion by BKO B cells inhibits IL-21 expression, a known inducer of TFH -cell differentiation and expansion. Together, these data reveal cell intrinsic and surprising cell extrinsic roles for LKB1 in B cells that control TFH -cell differentiation and GC formation, and place LKB1 as a central regulator of T-cell-dependent humoral immunity.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Centro Germinativo/fisiologia , Ativação Linfocitária , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/genética , Linfócitos T Auxiliares-Indutores/imunologia , Proteínas Quinases Ativadas por AMP , Animais , Diferenciação Celular , Interleucina-6/imunologia , Interleucina-6/metabolismo , Interleucinas/imunologia , Camundongos , NF-kappa B/genética , Linfócitos T Auxiliares-Indutores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA