Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 5681, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029170

RESUMO

Cyclones are a poorly described disturbance in tropical lakes, with the potential to alter ecosystems and compromise the services they provide. In November 2020, Hurricanes Eta and Iota made landfall near the Nicaragua-Honduras border, inundating the region with a large amount of late-season precipitation. To understand the impact of these storms on Lake Yojoa, Honduras, we compared 2020 and 2021 conditions using continuous (every 16 days) data collected from five pelagic locations. The storms resulted in increased Secchi depth and decreased algal abundance in December 2020, and January and February 2021, and lower-than-average accumulation of hypolimnetic nutrients from the onset of stratification (April 2021) until mixus in November 2021. Despite the reduced hypolimnetic nutrient concentrations, epilimnetic nutrient concentrations returned to (and in some cases exceeded) pre-hurricane levels following annual water column turnover in 2021. This response suggests that Lake Yojoa's trophic state had only an ephemeral response to the disturbance imposed by the two hurricanes, likely due to internal input of sediment derived nutrients. These aseasonal storms acted as a large-scale experiment that resulted in nutrient dilution and demonstrated the resilience of Lake Yojoa's trophic state to temporary nutrient reductions.


Assuntos
Tempestades Ciclônicas , Ecossistema , Lagos , Honduras , Água , Fósforo/análise , Monitoramento Ambiental/métodos
2.
Sci Total Environ ; 785: 147246, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33940419

RESUMO

Reservoir presence and construction has become commonplace along rivers due to the multitude of ecosystem services they provide. Many services are well recognized, including the effectiveness of sequestering both sediments and sediment-bound nutrients such as silts and phosphorus (P). Reservoirs are also capable of transforming or sequestering significant quantities of nutrients with more complex biogeochemical pathways, like nitrogen (N). Reservoir assessments, independent of inflow-outflow models, have primarily focused on a small number of systems creating a growing need to understand how reservoirs function both individually and as reservoir sequences within large rivers and their watersheds. Models have simulated the overall efficiency and drivers of reservoir nutrient deposition, but few have considered how a sequence of reservoirs alters deposition as an interdependent watershed-sediment-transport-system. In this study, we collected sediment cores from a six-reservoir sequence along a 5th - 6th order stream receiving treated waters from a large metropolitan area in the subtropical southeastern United States. Paleolimnological studies of subtropical reservoirs are underrepresented and are needed to understand the history of reservoir development. Using paleolimnological techniques and a known 30 year flux of riverine nutrient loading from waste water treatment facilities, we compared nutrient deposition to reservoir morphological qualities and primary producer community structure during the past ~50 years. Our findings suggest phosphorus deposition is associated with reservoir order downstream of the primary nutrient source, nitrogen deposition is linked to reservoir water retention time, and N:P is most strongly linked to reservoir surface area and watershed population density. Our results were strongly influenced by a large upstream and metropolitan nutrient source, common in large rivers, but under different conditions of nutrient loading (i.e. nonpoint source), reservoirs may express other nutrient depositional patterns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA