Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Anim Microbiome ; 6(1): 52, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304935

RESUMO

BACKGROUND: Feed costs account for a high proportion of the variable cost of beef production, ultimately impacting overall profitability. Thus, improving feed efficiency of beef cattle, by way of determining the underlying genomic control and selecting for feed efficient cattle provides a method through which feed input costs may be reduced whilst also contributing to the environmental sustainability of beef production. The rumen microbiome dictates the feed degradation capacity and consequent nutrient supply in ruminants, thus potentially impacted by feed efficiency phenotype. Equally, liver tissue has been shown to be responsive to feed efficiency phenotype as well as dietary intake. However, although both the rumen microbiome and liver transcriptome have been shown to be impacted by host feed efficiency phenotype, knowledge of the interaction between the rumen microbiome and other peripheral tissues within the body, including the liver is lacking. Thus, the objective of this study was to compare two contrasting breed types (Charolais and Holstein-Friesian) divergent for residual feed intake (RFI) over contrasting dietary phases (zero-grazed grass and high-concentrate), based on gene co-expression network analysis of liver transcriptome data and microbe co-abundance network of rumen microbiome data. Traits including RFI, dry matter intake (DMI) and growth rate (ADG), as well as rumen concentrations of volatile fatty acids were also included within the network analysis. RESULTS: Overall, DMI had the greatest number of connections followed by RFI, with ADG displaying the fewest number of significant connections. Hepatic genes related to lipid metabolism were correlated to both RFI and DMI phenotypes, whilst genes related to immune response were correlated to DMI. Despite the known relationship between RFI and DMI, the same microbes were not directly connected to these phenotypes, the Succiniclasticum genus was however, negatively connected to both RFI and ADG. Additionally, a stepwise regression analysis revealed significant roles for both Succiniclasticum genus and Roseburia.faecis sp. in predicting RFI, DMI and ADG. CONCLUSIONS: Results from this study highlight the interactive relationships between rumen microbiome and hepatic transcriptome data of cattle divergent for RFI, whilst also increasing our understanding of the underlying biology of both DMI and ADG in beef cattle.

2.
Front Microbiol ; 15: 1359611, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737409

RESUMO

Introduction: Neonatal calf diarrhea is a multifactorial condition that occurs in early life when calves are particularly susceptible to enteric infection and dysbiosis of the gut microbiome. Good calf health is dependent on successful passive transfer of immunity from the dam through colostrum. There are limited studies on the developing gut microbiota from birth to weaning in calves. Methodology: Therefore, the objective of this study was to examine the effect of immune status and diarrheal incidence on the development of the fecal microbiota in Jersey (n = 22) and Holstein (n = 29) heifer calves throughout the pre-weaning period. Calves were hand-fed a colostrum volume equivalent to 8.5% of their birthweight, from either the calf's dam (n = 28) or re-heated mixed colostrum (≤2 cows, ≤1d; n = 23) within 2 h of birth. All calves were clinically assessed using a modified Wisconsin-Madison calf health scoring system and rectal temperature at day (d) 0, d7, d21, or disease manifestation (DM) and weaning (d83). Weights were recorded at d0, d21, and d83. Calf blood samples were collected at d7 for the determination of calf serum IgG (sIgG). Fecal samples were obtained at d7, d21/DM [mean d22 (SE 0.70)], and at weaning for 16S rRNA amplicon sequencing of the fecal microbiota. Data were processed in R using DADA2; taxonomy was assigned using the SILVA database and further analyzed using Phyloseq and MaAsLin 2. Results and discussion: Significant amplicon sequence variants (ASVs) and calf performance data underwent a Spearman rank-order correlation test. There was no effect (p > 0.05) of colostrum source or calf breed on serum total protein. An effect of calf breed (p < 0.05) was observed on sIgG concentrations such that Holstein calves had 6.49 (SE 2.99) mg/ml higher sIgG than Jersey calves. Colostrum source and calf breed had no effect (p > 0.05) on health status or the alpha diversity of the fecal microbiota. There was a relationship between health status and time interaction (p < 0.001), whereby alpha diversity increased with time; however, diarrheic calves had reduced microbial diversity at DM. No difference (p > 0.05) in beta diversity of the microbiota was detected at d7 or d83. At the genus level, 33 ASVs were associated (adj.p < 0.05) with health status over the pre-weaning period.

3.
Sci Total Environ ; 926: 171808, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508273

RESUMO

Enteric methane (CH4) produced by ruminant livestock is a potent greenhouse gas and represents significant energy loss for the animal. The novel application of oxidising compounds as antimethanogenic agents with future potential to be included in ruminant feeds, was assessed across two separate experiments in this study. Low concentrations of oxidising agents, namely urea hydrogen peroxide (UHP) with and without potassium iodide (KI), and magnesium peroxide (MgO2), were investigated for their effects on CH4 production, total gas production (TGP), volatile fatty acid (VFA) profiles, and nutrient disappearance in vitro using the rumen simulation technique. In both experiments, the in vitro diet consisted of 50:50 grass silage:concentrate on a dry matter basis. Treatment concentrations were based on the amount of oxygen delivered and expressed in terms of fold concentration. In Experiment 1, four treatments were tested (Control, 1× UHP + KI, 1× UHP, and 0.5× UHP + KI), and six treatments were assessed in Experiment 2 (Control, 0.5× UHP + KI, 0.5× UHP, 0.25× UHP + KI, 0.25× UHP, and 0.12× MgO2). All treatments in this study had a reducing effect on CH4 parameters. A dose-dependent reduction of TGP and CH4 parameters was observed, where treatments delivering higher levels of oxygen resulted in greater CH4 suppression. 1× UHP + KI reduced TGP by 28 % (p = 0.611), CH4% by 64 % (p = 0.075) and CH4 mmol/g digestible organic matter by 71 % (p = 0.037). 0.12× MgO2 reduced CH4 volume by 25 % (p > 0.05) without affecting any other parameters. Acetate-to-propionate ratios were reduced by treatments in both experiments (p < 0.01). Molar proportions of acetate and butyrate were reduced, while propionate and valerate were increased in UHP treatments. High concentrations of UHP affected the degradation of neutral detergent fibre in the forage substrate. Future in vitro work should investigate alternative slow-release oxygen sources aimed at prolonging CH4 suppression.


Assuntos
Propionatos , Rúmen , Animais , Feminino , Propionatos/metabolismo , Metano/metabolismo , Óxido de Magnésio/metabolismo , Dieta , Silagem/análise , Ruminantes , Acetatos/metabolismo , Oxigênio/metabolismo , Ração Animal/análise , Fermentação , Digestão , Lactação
4.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38206107

RESUMO

Research into the potential use of various dietary feed supplements to reduce methane (CH4) production from ruminants has proliferated in recent years. In this study, two 8-wk long experiments were conducted with mature ewes and incorporated the use of a variety of natural dietary feed supplements offered either independently or in combination. Both experiments followed a randomized complete block design. Ewes were offered a basal diet in the form of ad libitum access to grass silage supplemented with 0.5 kg concentrates/ewe/d. The entire daily dietary concentrate allocation, incorporating the respective feed supplement, was offered each morning, and this was followed by the daily silage allocation. In experiment 1, the experimental diets contained 1) no supplementation (CON), 2) Ascophyllum nodosum (SW), 3) A. nodosum extract (EX1), 4) a blend of garlic and citrus extracts (GAR), and 5) a blend of essential oils (EO). In experiment 2, the experimental diets contained 1) no supplementation (CON), 2) A. nodosum extract (EX2), 3) soya oil (SO), and 4) a combination of EX2 and SO (EXSO). Twenty ewes per treatment were individually housed during both experiments. Methane was measured using portable accumulation chambers. Rumen fluid was collected at the end of both experiments for subsequent volatile fatty acid (VFA) and ammonia analyses. Data were analyzed using mixed models ANOVA (PROC MIXED, SAS v9.4). Statistically significant differences between treatment means were considered when P < 0.05. Dry matter intake was not affected by diet in either experiment (P > 0.05). Ewes offered EO tended to have an increased feed:gain ratio relative to CON (P < 0.10) and SO tended to increase the average daily gain (P < 0.10) which resulted in animals having a higher final body weight (P < 0.05) than CON. Ewes offered EX1 and SO emitted 9% less CH4 g/d than CON. The only dietary treatment to have an effect on rumen fermentation variables relative to CON was SW, which enhanced total VFA production (P < 0.05). In conclusion, the A. nodosum extract had inconsistent results on CH4 emissions whereby EX1 reduced CH4 g/d while EX2 had no mitigating effect on CH4 production, likely due to the differences in PT content reported for EX1 and EX2. SO was the only dietary feed supplement assessed in the current study that enhanced animal performance whilst mitigating daily CH4 production.


Reducing methane emissions from agriculture is vital to minimize the effects of global warming and to meet greenhouse gas reduction targets set by EU policy. In this experiment, a range of natural feed supplements were offered to mature ewes through the concentrated portion of their diet. Soya oil and brown seaweed extract reduced daily methane emissions by 9% when offered independently of each other; however, no reduction in methane was observed when combined. Additionally, inclusion of soya oil improved animal weight gain. Results from the current experiment may contribute to the development of a targeted dietary strategy to reduce methane emissions from livestock.


Assuntos
Dieta , Metano , Ovinos , Animais , Feminino , Metano/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Ruminantes , Silagem/análise , Ácidos Graxos Voláteis/metabolismo , Rúmen/metabolismo , Óleo de Soja/metabolismo , Extratos Vegetais , Fermentação , Ração Animal/análise , Lactação , Digestão
5.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38038711

RESUMO

There is an urgent requirement internationally to reduce enteric methane (CH4) emissions from ruminants to meet greenhouse gas emissions reduction targets. Dietary supplementation with feed additives is one possible strategy under investigation as an effective solution. The effects of the CH4 inhibitor 3-nitrooxypropanol (3-NOP) at reducing CH4 emissions in beef have been shown mainly in adult cattle consuming backgrounding and high-energy finishing diets. In this study, the effects of dietary supplementation of young growing (≤6 mo) beef cattle with 3-NOP were examined in a 50:50 forage:concentrate diet. A total of 68 Dairy × Beef (Aberdeen Angus and Hereford dairy cross) male calves (≤6 mo of age at the start of experiment, body weight: 147 ±â€…38 kg) underwent a 3-wk acclimatization period and were then assigned to one of two treatments in a completely randomized block design. Dietary treatments were (1) control, placebo (no 3-NOP), and (2) 3-NOP applied at 150 mg kg-1 DM. Calves were fed a partial mixed ration for 12 wk. Body weight was recorded weekly and feed intake daily using the Calan Broadbent feeding system. Methane and hydrogen emissions were measured using the GreenFeed system. Total weight gained, dry matter intake (DMI), and average daily gain were not affected by 3-NOP (P > 0.05) supplementation. On average, the inclusion of 3-NOP decreased (P < 0.001) CH4 emissions: g d-1; g kg-1 DMI; by 30.6% and 27.2%, respectively, during the study with a greater reduction occurring over time. Incorporating 3-NOP into beef cattle diets is an efficient solution to decrease CH4 emissions during indoor feeding and when offered 50:50 forage:concentrate diet.


Enteric methane (CH4) is a by-product from the fermentation of feed in the digestive tract of cattle. The production of CH4 is responsible for the loss of 2% to 12% of the animal's gross energy intake. A potent greenhouse gas, CH4 from ruminant systems accounts for 30% of international anthropogenic CH4 emissions. As a result, a significant effort has been made internationally to reduce CH4 emissions from ruminants in order to achieve reductions in global greenhouse gas emissions. The supplementation of additives in the feed has been demonstrated to be an effective strategy in reducing CH4 emitted from livestock. The purpose of this research was to investigate the effects of supplementing young growing cattle with the CH4 inhibitor, 3-nitrooxypropanol (3-NOP), consuming a 50:50 forage:concentrate diet. A total of 68 Dairy × Beef (Aberdeen Angus and Hereford dairy cross) male calves (≤6 mo of age at the start of the experiment) were assigned to one of two treatments: control (no 3-NOP) and 3-NOP. Animals received their diets for 12 wk. Animal performance was recorded weekly, with CH4 and hydrogen (H2) emissions recorded daily. Dry matter intake and animal performance were not affected by the inclusion of 3-NOP. Over the duration of this study, the inclusion of 3-NOP decreased daily CH4 emissions by 30.6%, with a 227% increase in daily H2 emissions.


Assuntos
Ração Animal , Propanóis , Rúmen , Animais , Bovinos , Masculino , Ração Animal/análise , Peso Corporal , Dieta/veterinária , Suplementos Nutricionais/análise , Fermentação , Metano/metabolismo , Rúmen/metabolismo
7.
Sci Rep ; 13(1): 9034, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270611

RESUMO

Improving cattle feed efficiency through selection of residual feed intake (RFI) is a widely accepted approach to sustainable beef production. A greater understanding of the molecular control of RFI in various breeds offered contrasting diets is necessary for the accurate identification of feed efficient animals and will underpin accelerated genetic improvement of the trait. The aim of this study was to determine genes and biological processes contributing to RFI across varying breed type and dietary sources in skeletal muscle tissue. Residual feed intake was calculated in Charolais and Holstein-Friesian steers across multiple dietary phases (phase-1: high concentrate (growing-phase); phase-2: zero-grazed grass (growing-phase); phase-3: high concentrate (finishing-phase). Steers divergent for RFI within each breed and dietary phase were selected for muscle biopsy collection, and muscle samples subsequently subjected to RNAseq analysis. No gene was consistently differentially expressed across the breed and diet types examined. However, pathway analysis revealed commonality across breeds and diets for biological processes including fatty acid metabolism, immune function, energy production and muscle growth. Overall, the lack of commonality of individual genes towards variation in RFI both within the current study and compared to the published literature, suggests other genomic features warrant further evaluation in relation to RFI.


Assuntos
Ração Animal , Transcriptoma , Bovinos/genética , Animais , Ração Animal/análise , Melhoramento Vegetal , Ingestão de Alimentos/genética , Dieta/veterinária
8.
ISME J ; 17(7): 1128-1140, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37169869

RESUMO

Protozoa comprise a major fraction of the microbial biomass in the rumen microbiome, of which the entodiniomorphs (order: Entodiniomorphida) and holotrichs (order: Vestibuliferida) are consistently observed to be dominant across a diverse genetic and geographical range of ruminant hosts. Despite the apparent core role that protozoal species exert, their major biological and metabolic contributions to rumen function remain largely undescribed in vivo. Here, we have leveraged (meta)genome-centric metaproteomes from rumen fluid samples originating from both cattle and goats fed diets with varying inclusion levels of lipids and starch, to detail the specific metabolic niches that protozoa occupy in the context of their microbial co-habitants. Initial proteome estimations via total protein counts and label-free quantification highlight that entodiniomorph species Entodinium and Epidinium as well as the holotrichs Dasytricha and Isotricha comprise an extensive fraction of the total rumen metaproteome. Proteomic detection of protozoal metabolism such as hydrogenases (Dasytricha, Isotricha, Epidinium, Enoploplastron), carbohydrate-active enzymes (Epidinium, Diplodinium, Enoploplastron, Polyplastron), microbial predation (Entodinium) and volatile fatty acid production (Entodinium and Epidinium) was observed at increased levels in high methane-emitting animals. Despite certain protozoal species having well-established reputations for digesting starch, they were unexpectedly less detectable in low methane emitting-animals fed high starch diets, which were instead dominated by propionate/succinate-producing bacterial populations suspected of being resistant to predation irrespective of host. Finally, we reaffirmed our abovementioned observations in geographically independent datasets, thus illuminating the substantial metabolic influence that under-explored eukaryotic populations have in the rumen, with greater implications for both digestion and methane metabolism.


Assuntos
Cilióforos , Rúmen , Animais , Bovinos , Rúmen/microbiologia , Proteômica , Cilióforos/genética , Cilióforos/metabolismo , Ruminantes/metabolismo , Amido/metabolismo , Metano/metabolismo
10.
Front Genet ; 14: 1092877, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873940

RESUMO

Bovine herpesvirus 1 (BoHV-1), is associated with several clinical syndromes in cattle, among which bovine respiratory disease (BRD) is of particular significance. Despite the importance of the disease, there is a lack of information on the molecular response to infection via experimental challenge with BoHV-1. The objective of this study was to investigate the whole-blood transcriptome of dairy calves experimentally challenged with BoHV-1. A secondary objective was to compare the gene expression results between two separate BRD pathogens using data from a similar challenge study with BRSV. Holstein-Friesian calves (mean age (SD) = 149.2 (23.8) days; mean weight (SD) = 174.6 (21.3) kg) were either administered BoHV-1 inoculate (1 × 107/mL × 8.5 mL) (n = 12) or were mock challenged with sterile phosphate buffered saline (n = 6). Clinical signs were recorded daily from day (d) -1 to d 6 (post-challenge), and whole blood was collected in Tempus RNA tubes on d six post-challenge for RNA-sequencing. There were 488 differentially expressed (DE) genes (p < 0.05, False Discovery rate (FDR) < 0.10, fold change ≥2) between the two treatments. Enriched KEGG pathways (p < 0.05, FDR <0.05); included Influenza A, Cytokine-cytokine receptor interaction and NOD-like receptor signalling. Significant gene ontology terms (p < 0.05, FDR <0.05) included defence response to virus and inflammatory response. Genes that are highly DE in key pathways are potential therapeutic targets for the treatment of BoHV-1 infection. A comparison to data from a similar study with BRSV identified both similarities and differences in the immune response to differing BRD pathogens.

11.
Sci Rep ; 13(1): 3336, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849493

RESUMO

While the breed of cattle can impact on the composition and structure of microbial communities in the rumen, breed-specific effects on rumen microbial communities have rarely been examined in sheep. In addition, rumen microbial composition can differ between ruminal fractions, and be associated with ruminant feed efficiency and methane emissions. In this study, 16S rRNA amplicon sequencing was used to investigate the effects of breed and ruminal fraction on bacterial and archaeal communities in sheep. Solid, liquid and epithelial rumen samples were obtained from a total of 36 lambs, across 4 different sheep breeds (Cheviot (n = 10), Connemara (n = 6), Lanark (n = 10) and Perth (n = 10)), undergoing detailed measurements of feed efficiency, who were offered a nut based cereal diet ad-libitum supplemented with grass silage. Our results demonstrate that the feed conversion ratio (FCR) was lowest for the Cheviot (most efficient), and highest for the Connemara breed (least efficient). In the solid fraction, bacterial community richness was lowest in the Cheviot breed, while Sharpea azabuensis was most abundant in the Perth breed. Lanark, Cheviot and Perth breeds exhibited a significantly higher abundance of epithelial associated Succiniclasticum compared to the Connemara breed. When comparing ruminal fractions, Campylobacter, Family XIII, Mogibacterium, and Lachnospiraceae UCG-008 were most abundant in the epithelial fraction. Our findings indicate that breed can impact the abundance of specific bacterial taxa in sheep while having little effect on the overall composition of the microbial community. This finding has implications for genetic selection breeding programs aimed at improving feed conversion efficiency of sheep. Furthermore, the variations in the distribution of bacterial species identified between ruminal fractions, notably between solid and epithelial fractions, reveals a rumen fraction bias, which has implications for sheep rumen sampling techniques.


Assuntos
Archaea , Campylobacter , Ovinos , Animais , Bovinos , Archaea/genética , RNA Ribossômico 16S/genética , Melhoramento Vegetal , Veillonellaceae , Clostridiales
12.
Nat Commun ; 13(1): 6240, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266280

RESUMO

Quinella is a genus of iconic rumen bacteria first reported in 1913. There are no cultures of these bacteria, and information on their physiology is scarce and contradictory. Increased abundance of Quinella was previously found in the rumens of some sheep that emit low amounts of methane (CH4) relative to their feed intake, but whether Quinella contributes to low CH4 emissions is not known. Here, we concentrate Quinella cells from sheep rumen contents, extract and sequence DNA, and reconstruct Quinella genomes that are >90% complete with as little as 0.20% contamination. Bioinformatic analyses of the encoded proteins indicate that lactate and propionate formation are major fermentation pathways. The presence of a gene encoding a potential uptake hydrogenase suggests that Quinella might be able to use free hydrogen (H2). None of the inferred metabolic pathways is predicted to produce H2, a major precursor of CH4, which is consistent with the lower CH4 emissions from those sheep with high abundances of this bacterium.


Assuntos
Propionatos , Rúmen , Ovinos , Animais , Rúmen/microbiologia , Propionatos/metabolismo , Bactérias/genética , Metano/metabolismo , Fermentação , Hidrogênio/metabolismo , Veillonellaceae , Genômica , Lactatos/metabolismo , Dieta/veterinária
13.
Viruses ; 14(9)2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36146668

RESUMO

Bovine respiratory disease (BRD), which is the leading cause of morbidity and mortality in cattle, is caused by numerous known and unknown viruses and is responsible for the widespread use of broad-spectrum antibiotics despite the use of polymicrobial BRD vaccines. Viral metagenomics sequencing on the portable, inexpensive Oxford Nanopore Technologies MinION sequencer and sequence analysis with its associated user-friendly point-and-click Epi2ME cloud-based pathogen identification software has the potential for point-of-care/same-day/sample-to-result metagenomic sequence diagnostics of known and unknown BRD pathogens to inform a rapid response and vaccine design. We assessed this potential using in vitro viral cell cultures and nasal swabs taken from calves that were experimentally challenged with a single known BRD-associated DNA virus, namely, bovine herpes virus 1. Extensive optimisation of the standard Oxford Nanopore library preparation protocols, particularly a reduction in the PCR bias of library amplification, was required before BoHV-1 could be identified as the main virus in the in vitro cell cultures and nasal swab samples within approximately 7 h from sample to result. In addition, we observed incorrect assignment of the bovine sequence to bacterial and viral taxa due to the presence of poor-quality bacterial and viral genome assemblies in the RefSeq database used by the EpiME Fastq WIMP pathogen identification software.


Assuntos
Doenças dos Bovinos , Herpesvirus Bovino 1 , Nanoporos , Vírus , Animais , Antibacterianos , Bovinos , Genômica , Herpesvirus Bovino 1/genética , Metagenômica/métodos , Vírus/genética
14.
Sci Total Environ ; 850: 158070, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35981583

RESUMO

Nitrous oxide (N2O) is a potent greenhouse gas (GHG) whose emission from soil can be enhanced by ruminant excretal returns in grasslands. The default (Tier 1) emission factors (EF3PRP; i.e. proportion of deposited nitrogen emitted as N2O) for ruminant excreta deposition are associated with a wide range of uncertainties and the development of country-specific (Tier 2) EF3PRP is encouraged. In Ireland, a Tier 2 EF3PRP has been developed for cattle excreta but no data are available for sheep. The aim of this study was to generate data to contribute to the derivation of a Tier 2 EF3PRP for sheep excreta, while assessing the effect of excreta type, grassland type and season of deposition on N2O emissions. An experiment was carried out on two sites in the west of Ireland: a managed lowland grassland (LOW) and an extensively grazed hill pasture (HILL), characterised by mineral and acid peat soils, respectively. For each season, four treatments were applied to the soil in a fully randomized block design: control (C), sheep urine (U), sheep dung (D), and artificial urine (AU). Nitrous oxide fluxes were assessed over a full year following each application of treatments, using a static chambers methodology. Results showed a brief initial peak following each application of U/AU in LOW but not in HILL. Cumulative N2O emissions were significantly higher from the lowland site. Average EF3PRP for combined excreta was negligible on both sites, thus lower than the IPCC Tier 1 EF3PRP. Causes of low emissions are likely to depend on site characteristics (e.g. soil acidity in HILL) and season of application (i.e. ammonia volatilisation in summer). This study showed very low N2O emissions from sheep excretal returns in Irish grasslands and highlighted the importance of developing Tier 2, animal-specific EF3PRP. More experimental grasslands should be assessed to confirm these results.


Assuntos
Gases de Efeito Estufa , Óxido Nitroso , Amônia/análise , Animais , Bovinos , Pradaria , Nitrogênio , Óxido Nitroso/análise , Ovinos , Solo
15.
Anim Nutr ; 10: 216-222, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35785258

RESUMO

Urea nitrogen secreted from blood to rumen is a crucial factor shaping the symbiotic relationship between host ruminants and their microbial populations. Passage of urea across rumen epithelia is facilitated by urea transporter B (UT-B), but the long-term regulation of these proteins remains unclear. As ruminal function develops over a period of months, the developing rumen is an excellent model with which to investigate this regulation. Using rumen epithelium samples of calves from birth to 96 d of age, this study performed immunolocalization studies to localize and semi-quantify UT-B protein development. As expected, preliminary experiments confirmed that ruminal monocarboxylate transporter 1 (MCT1) short chain fatty acid transporter protein abundance increased with age (P < 0.01, n = 4). Further investigation revealed that ruminal UT-B was present in the first few weeks of life and initially detected in the basolateral membrane of stratum basale cells. Over the next 2 months, UT-B staining spread to other epithelial layers and semi-quantification indicated that UT-B abundance significantly increased with age (P < 0.01, n = 4 or 6). These changes were in line with the development of rumen function after the advent of solid feed intake and weaning, exhibiting a similar pattern to both MCT1 transporters and papillae growth. This study therefore confirmed age-dependent changes of in situ ruminal UT-B protein, adding to our understanding of the long-term regulation of ruminal urea transporters.

16.
Front Microbiol ; 13: 855565, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572638

RESUMO

With the advent of high throughput technology, it is now feasible to study the complex relationship of the rumen microbiota with methanogenesis in large populations of ruminant livestock divergently ranked for enteric emissions. Recently, the residual methane emissions (RME) concept has been identified as the optimal phenotype for assessing the methanogenic potential of ruminant livestock due to the trait's independence from animal productivity but strong correlation with daily methane emissions. However, there is currently a dearth of data available on the bacterial and archaeal microbial communities residing in the rumens of animals divergently ranked for RME. Therefore, the objective of this study was to investigate the relationship between the rumen microbiota and RME in a population of finishing beef cattle. Methane emissions were estimated from individual animals using the GreenFeed Emissions Monitoring system for 21 days over a mean feed intake measurement period of 91 days. Residual methane emissions were calculated for 282 crossbred finishing beef cattle, following which a ∼30% difference in all expressions of methane emissions was observed between high and low RME ranked animals. Rumen fluid samples were successfully obtained from 268 animals during the final week of the methane measurement period using a trans-oesophageal sampling device. Rumen microbial DNA was extracted and subjected to 16S rRNA amplicon sequencing. Animals ranked as low RME had the highest relative abundances (P < 0.05) of lactic-acid-producing bacteria (Intestinibaculum, Sharpea, and Olsenella) and Selenomonas, and the lowest (P < 0.05) proportions of Pseudobutyrivibrio, Butyrivibrio, and Mogibacterium. Within the rumen methanogen community, an increased abundance (P < 0.05) of the genus Methanosphaera and Methanobrevibacter RO clade was observed in low RME animals. The relative abundances of both Intestinibaculum and Olsenella were negatively correlated (P < 0.05) with RME and positively correlated with ruminal propionate. A similar relationship was observed for the abundance of Methanosphaera and the Methanobrevibacter RO clade. Findings from this study highlight the ruminal abundance of bacterial genera associated with the synthesis of propionate via the acrylate pathway, as well as the methanogens Methanosphaera and members of the Methanobrevibacter RO clade as potential microbial biomarkers of the methanogenic potential of beef cattle.

17.
Front Vet Sci ; 9: 958340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619952

RESUMO

Ruminant livestock play a key role in global society through the conversion of lignocellulolytic plant matter into high-quality sources of protein for human consumption. However, as a consequence of the digestive physiology of ruminant species, methane (CH4), which originates as a byproduct of enteric fermentation, is accountable for 40% of global agriculture's carbon footprint and ~6% of global greenhouse gas (GHG) emissions. Therefore, meeting the increasing demand for animal protein associated with a growing global population while reducing the GHG intensity of ruminant production will be a challenge for both the livestock industry and the research community. In recent decades, numerous strategies have been identified as having the potential to reduce the methanogenic output of livestock. Dietary supplementation with antimethanogenic compounds, targeting members of the rumen methanogen community and/or suppressing the availability of methanogenesis substrates (mainly H2 and CO2), may have the potential to reduce the methanogenic output of housed livestock. However, reducing the environmental impact of pasture-based beef cattle may be a challenge, but it can be achieved by enhancing the nutritional quality of grazed forage in an effort to improve animal growth rates and ultimately reduce lifetime emissions. In addition, the genetic selection of low-CH4-emitting and/or faster-growing animals will likely benefit all beef cattle production systems by reducing the methanogenic potential of future generations of livestock. Similarly, the development of other mitigation technologies requiring minimal intervention and labor for their application, such as anti-methanogen vaccines, would likely appeal to livestock producers, with high uptake among farmers if proven effective. Therefore, the objective of this review is to give a detailed overview of the CH4 mitigation solutions, both currently available and under development, for temperate pasture-based beef cattle production systems. A description of ruminal methanogenesis and the technologies used to estimate enteric emissions at pastures are also presented.

18.
Sci Total Environ ; 803: 149935, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34487900

RESUMO

Excreta deposition onto pasture, range and paddocks (PRP) by grazing ruminant constitute a source of nitrous oxide (N2O), a potent greenhouse gas (GHG). These emissions must be reported in national GHG inventories, and their estimation is based on the application of an emission factor, EF3PRP (proportion of nitrogen (N) deposited to the soil through ruminant excreta, which is emitted as N2O). Depending on local data available, countries use various EF3PRPs and approaches to estimate N2O emissions from grazing ruminant excreta. Based on ten case study countries, this review aims to highlight the uncertainties around the methods used to account for these emissions in their national GHG inventories, and to discuss the efforts undertaken for considering factors of variation in the calculation of emissions. Without any local experimental data, 2006 the IPCC default (Tier 1) EF3PRPs are still widely applied although the default values were revised in 2019. Some countries have developed country-specific (Tier 2) EF3PRP based on local field studies. The accuracy of estimation can be improved through the disaggregation of EF3PRP or the application of models; two approaches including factors of variation. While a disaggregation of EF3PRP by excreta type is already well adopted, a disaggregation by other factors such as season of excreta deposition is more difficult to implement. Empirical models are a potential method of considering factors of variation in the establishment of EF3PRP. Disaggregation and modelling requires availability of sufficient experimental and activity data, hence why only few countries have currently adopted such approaches. Replication of field studies under various conditions, combined with meta-analysis of experimental data, can help in the exploration of influencing factors, as long as appropriate metadata is recorded. Overall, despite standard IPCC methodologies for calculating GHG emissions, large uncertainties and differences between individual countries' accounting remain to be addressed.


Assuntos
Gases de Efeito Estufa , Animais , Gases de Efeito Estufa/análise , Óxido Nitroso/análise , Ruminantes , Estações do Ano , Solo
19.
J Anim Sci ; 99(11)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598276

RESUMO

Residual expressions of enteric emissions favor a more equitable identification of an animal's methanogenic potential compared with traditional measures of enteric emissions. The objective of this study was to investigate the effect of divergently ranking beef cattle for residual methane emissions (RME) on animal productivity, enteric emissions, and rumen fermentation. Dry matter intake (DMI), growth, feed efficiency, carcass output, and enteric emissions (GreenFeed emissions monitoring system) were recorded on 294 crossbred beef cattle (steers = 135 and heifers = 159; mean age 441 d (SD = 49); initial body weight (BW) of 476 kg (SD = 67)) at the Irish national beef cattle performance test center. Animals were offered a total mixed ration (77% concentrate and 23% forage; 12.6 MJ ME/kg of DM and 12% CP) ad libitum with emissions estimated for 21 d over a mean feed intake measurement period of 91 d. Animals had a mean daily methane emissions (DME) of 229.18 g/d (SD = 45.96), methane yield (MY) of 22.07 g/kg of DMI (SD = 4.06), methane intensity (MI) 0.70 g/kg of carcass weight (SD = 0.15), and RME 0.00 g/d (SD = 0.34). RME was computed as the residuals from a multiple regression model regressing DME on DMI and BW (R2 = 0.45). Animals were ranked into three groups namely high RME (>0.5 SD above the mean), medium RME (±0.5 SD above/below the mean), and low RME (>0.5 SD below the mean). Low RME animals produced 17.6% and 30.4% less (P < 0.05) DME compared with medium and high RME animals, respectively. A ~30% reduction in MY and MI was detected in low versus high RME animals. Positive correlations were apparent among all methane traits with RME most highly associated with (r = 0.86) DME. MY and MI were correlated (P < 0.05) with DMI, growth, feed efficiency, and carcass output. High RME had lower (P < 0.05) ruminal propionate compared with low RME animals and increased (P < 0.05) butyrate compared with medium and low RME animals. Propionate was negatively associated (P < 0.05) with all methane traits. Greater acetate:propionate ratio was associated with higher RME (r = 0.18; P < 0.05). Under the ad libitum feeding regime deployed here, RME was the best predictor of DME and only methane trait independent of animal productivity. Ranking animals on RME presents the opportunity to exploit interanimal variation in enteric emissions as well as providing a more equitable index of the methanogenic potential of an animal on which to investigate the underlying biological regulatory mechanisms.


Assuntos
Metano , Rúmen , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Ingestão de Alimentos , Feminino , Fermentação , Metano/metabolismo , Rúmen/metabolismo
20.
J Anim Sci ; 99(10)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34586400

RESUMO

Ruminant supply chains contribute 5.7 gigatons of CO2-eq per annum, which represents approximately 80% of the livestock sector emissions. One of the largest sources of emission in the ruminant sector is methane (CH4), accounting for approximately 40% of the sectors total emissions. With climate change being a growing concern, emphasis is being put on reducing greenhouse gas emissions, including those from ruminant production. Various genetic and environmental factors influence cattle CH4 production, such as breed, genetic makeup, diet, management practices, and physiological status of the host. The influence of genetic variability on CH4 yield in ruminants indicates that genomic selection for reduced CH4 emissions is possible. Although the microbiology of CH4 production has been studied, further research is needed to identify key differences in the host and microbiome genomes and how they interact with one another. The advancement of "-omics" technologies, such as metabolomics and metagenomics, may provide valuable information in this regard. Improved understanding of genetic mechanisms associated with CH4 production and the interaction between the microbiome profile and host genetics will increase the rate of genetic progress for reduced CH4 emissions. Through a systems biology approach, various "-omics" technologies can be combined to unravel genomic regions and genetic markers associated with CH4 production, which can then be used in selective breeding programs. This comprehensive review discusses current challenges in applying genomic selection for reduced CH4 emissions, and the potential for "-omics" technologies, especially metabolomics and metagenomics, to minimize such challenges. The integration and evaluation of different levels of biological information using a systems biology approach is also discussed, which can assist in understanding the underlying genetic mechanisms and biology of CH4 production traits in ruminants and aid in reducing agriculture's overall environmental footprint.


Assuntos
Gases de Efeito Estufa , Metano , Animais , Bovinos/genética , Metabolômica , Metagenômica , Metano/análise , Ruminantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA