Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37293035

RESUMO

A wide variety of human diseases are associated with loss of microbial diversity in the human gut, inspiring a great interest in the diagnostic or therapeutic potential of the microbiota. However, the ecological forces that drive diversity reduction in disease states remain unclear, rendering it difficult to ascertain the role of the microbiota in disease emergence or severity. One hypothesis to explain this phenomenon is that microbial diversity is diminished as disease states select for microbial populations that are more fit to survive environmental stress caused by inflammation or other host factors. Here, we tested this hypothesis on a large scale, by developing a software framework to quantify the enrichment of microbial metabolisms in complex metagenomes as a function of microbial diversity. We applied this framework to over 400 gut metagenomes from individuals who are healthy or diagnosed with inflammatory bowel disease (IBD). We found that high metabolic independence (HMI) is a distinguishing characteristic of microbial communities associated with individuals diagnosed with IBD. A classifier we trained using the normalized copy numbers of 33 HMI-associated metabolic modules not only distinguished states of health versus IBD, but also tracked the recovery of the gut microbiome following antibiotic treatment, suggesting that HMI is a hallmark of microbial communities in stressed gut environments.

2.
Genome Biol ; 24(1): 78, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069665

RESUMO

BACKGROUND: Changes in microbial community composition as a function of human health and disease states have sparked remarkable interest in the human gut microbiome. However, establishing reproducible insights into the determinants of microbial succession in disease has been a formidable challenge. RESULTS: Here we use fecal microbiota transplantation (FMT) as an in natura experimental model to investigate the association between metabolic independence and resilience in stressed gut environments. Our genome-resolved metagenomics survey suggests that FMT serves as an environmental filter that favors populations with higher metabolic independence, the genomes of which encode complete metabolic modules to synthesize critical metabolites, including amino acids, nucleotides, and vitamins. Interestingly, we observe higher completion of the same biosynthetic pathways in microbes enriched in IBD patients. CONCLUSIONS: These observations suggest a general mechanism that underlies changes in diversity in perturbed gut environments and reveal taxon-independent markers of "dysbiosis" that may explain why widespread yet typically low-abundance members of healthy gut microbiomes can dominate under inflammatory conditions without any causal association with disease.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Transplante de Microbiota Fecal , Metagenômica , Aminoácidos , Fezes
3.
J Crohns Colitis ; 17(7): 1103-1113, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934439

RESUMO

BACKGROUND AND AIMS: Exclusive enteral nutrition [EEN] is a dietary intervention to induce clinical remission in children with active luminal Crohn's disease [CD]. While changes in the gut microbial communities have been implicated in achieving this remission, a precise understanding of the role of microbial ecology in the restoration of gut homeostasis is lacking. METHODS: Here we reconstructed genomes from the gut metagenomes of 12 paediatric subjects who were sampled before, during and after EEN. We then classified each microbial population into distinct 'phenotypes' or patterns of response based on changes in their relative abundances throughout the therapy on a per-individual basis. RESULTS: Our data show that children achieving clinical remission during therapy were enriched with microbial populations that were either suppressed or that demonstrated a transient bloom as a function of EEN. In contrast, this ecosystem-level response was not observed in cases of EEN failure. Further analysis revealed that populations that were suppressed during EEN were significantly more prevalent in healthy children and adults across the globe compared with those that bloomed ephemerally during the therapy. CONCLUSIONS: These observations taken together suggest that successful outcomes of EEN are marked by a temporary emergence of microbial populations that are rare in healthy individuals, and a concomitant reduction in microbes that are commonly associated with gut homeostasis. Our work is a first attempt to highlight individual-specific, complex environmental factors that influence microbial response in EEN. This model offers a novel, alternative viewpoint to traditional taxonomic strategies used to characterize associations with health and disease states.


Assuntos
Doença de Crohn , Microbiota , Humanos , Nutrição Enteral , Indução de Remissão , Bactérias
4.
mSystems ; 7(3): e0142221, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35642511

RESUMO

Eukaryotic organisms evolved in a microbial world and often have intimate associations with diverse bacterial groups. Kelp, brown macroalgae in the order Laminariales, play a vital role in coastal ecosystems, yet we know little about the functional role of the microbial symbionts that cover their photosynthetic surfaces. Here, we reconstructed 79 bacterial metagenome-assembled genomes (MAGs) from blades of the bull kelp, Nereocystis luetkeana, allowing us to determine their metabolic potential and functional roles. Despite the annual life history of bull kelp, nearly half of the bacterial MAGs were detected across multiple years. Diverse members of the kelp microbiome, spanning 6 bacterial phyla, contained genes for transporting and assimilating dissolved organic matter (DOM), which is secreted by kelp in large quantities and likely fuels the metabolism of these heterotrophic bacteria. Bacterial genomes also contained alginate lyase and biosynthesis genes, involved in polysaccharide degradation and biofilm formation, respectively. Kelp-associated bacterial genomes contained genes for dissimilatory nitrate reduction and urea hydrolysis, likely providing a reduced source of nitrogen to the host kelp. The genome of the most abundant member of the kelp microbiome and common macroalgal symbiont, Granulosicoccus, contained a full suite of genes for synthesizing cobalamin (vitamin B12), suggesting that kelp-associated bacteria have the potential to provide their host kelp with vitamins. Finally, kelp-associated Granulosicoccus contained genes that typify the aerobic anoxygenic phototrophic bacteria, including genes for bacteriochlorophyll synthesis and photosystem II reaction center proteins, making them the first known photoheterotrophic representatives of this genus. IMPORTANCE Kelp (brown algae in the order Laminariales) are foundational species that create essential habitat in temperate and arctic coastal marine ecosystems. These photosynthetic giants host millions of microbial taxa whose functions are relatively unknown, despite their potential importance for host-microbe interactions and nutrient cycling in kelp forest ecosystems. We reconstructed bacterial genomes from metagenomic samples collected from blades of the bull kelp, Nereocystis luetkeana, allowing us to determine the functional gene content of specific members of the kelp microbiome. These bacterial genomes spanned 6 phyla and 19 families and included common alga-associated microbial symbionts such as Granulosicoccus. Key functions encoded in kelp-associated bacterial genomes included dissolved organic matter assimilation, alginate metabolism, vitamin B12 biosynthesis, and nitrogen reduction from nitrate and urea to ammonium, potentially providing the host kelp with vitamins and reduced nitrogen.


Assuntos
Kelp , Microbiota , Humanos , Metagenoma/genética , Kelp/genética , Matéria Orgânica Dissolvida , Nitratos/metabolismo , Filogenia , Microbiota/genética , Bactérias , Vitaminas/metabolismo
5.
Cell Host Microbe ; 30(4): 583-598.e8, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35421353

RESUMO

Manipulation of the gut microbiota via fecal microbiota transplantation (FMT) has shown clinical promise in diseases such as recurrent Clostridioides difficile infection (rCDI). However, the variable nature of this approach makes it challenging to describe the relationship between fecal strain colonization, corresponding microbiota changes, and clinical efficacy. Live biotherapeutic products (LBPs) consisting of defined consortia of clonal bacterial isolates have been proposed as an alternative therapeutic class because of their promising preclinical results and safety profile. We describe VE303, an LBP comprising 8 commensal Clostridia strains under development for rCDI, and its early clinical development in healthy volunteers (HVs). In a phase 1a/b study in HVs, VE303 is determined to be safe and well-tolerated at all doses tested. VE303 strains optimally colonize HVs if dosed over multiple days after vancomycin pretreatment. VE303 promotes the establishment of a microbiota community known to provide colonization resistance.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbiota , Infecções por Clostridium/microbiologia , Infecções por Clostridium/terapia , Transplante de Microbiota Fecal/métodos , Voluntários Saudáveis , Humanos
7.
Genome Biol ; 21(1): 292, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33323122

RESUMO

INTRODUCTION: Microbial residents of the human oral cavity have long been a major focus of microbiology due to their influence on host health and intriguing patterns of site specificity amidst the lack of dispersal limitation. However, the determinants of niche partitioning in this habitat are yet to be fully understood, especially among taxa that belong to recently discovered branches of microbial life. RESULTS: Here, we assemble metagenomes from tongue and dental plaque samples from multiple individuals and reconstruct 790 non-redundant genomes, 43 of which resolve to TM7, a member of the Candidate Phyla Radiation, forming six monophyletic clades that distinctly associate with either plaque or tongue. Both pangenomic and phylogenomic analyses group tongue-specific clades with other host-associated TM7 genomes. In contrast, plaque-specific TM7 group with environmental TM7 genomes. Besides offering deeper insights into the ecology, evolution, and mobilome of cryptic members of the oral microbiome, our study reveals an intriguing resemblance between dental plaque and non-host environments indicated by the TM7 evolution, suggesting that plaque may have served as a stepping stone for environmental microbes to adapt to host environments for some clades of microbes. Additionally, we report that prophages are widespread among oral-associated TM7, while absent from environmental TM7, suggesting that prophages may have played a role in adaptation of TM7 to the host environment. CONCLUSIONS: Our data illuminate niche partitioning of enigmatic members of the oral cavity, including TM7, SR1, and GN02, and provide genomes for poorly characterized yet prevalent members of this biome, such as uncultivated Flavobacteriaceae.


Assuntos
Marcadores Genéticos , Metagenoma , Microbiota/genética , Boca/microbiologia , Adaptação Fisiológica , Adulto , Bactérias/genética , Feminino , Genoma Bacteriano , Humanos , Sequências Repetitivas Dispersas , Masculino , Metagenômica , Pessoa de Meia-Idade , Filogenia , RNA Ribossômico 16S
8.
Elife ; 92020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32553109

RESUMO

Traditional cultivation approaches in microbiology are labor-intensive, low-throughput, and yield biased sampling of environmental microbes due to ecological and evolutionary factors. New strategies are needed for ample representation of rare taxa and slow-growers that are often outcompeted by fast-growers in cultivation experiments. Here we describe a microfluidic platform that anaerobically isolates and cultivates microbial cells in millions of picoliter droplets and automatically sorts them based on colony density to enhance slow-growing organisms. We applied our strategy to a fecal microbiota transplant (FMT) donor stool using multiple growth media, and found significant increase in taxonomic richness and larger representation of rare and clinically relevant taxa among droplet-grown cells compared to conventional plates. Furthermore, screening the FMT donor stool for antibiotic resistance revealed 21 populations that evaded detection in plate-based assessment of antibiotic resistance. Our method improves cultivation-based surveys of diverse microbiomes to gain deeper insights into microbial functioning and lifestyles.


The human gut is inhabited with hundreds of billions of bacterial cells from a wide range of families. This complex mixture of bacteria is part of the gut microbiome, along with other lifeforms such as viruses, archaea and fungi. As well as interacting with each other, the bacteria in the microbiome interact with our cells and available nutrients. Studying these interactions can help us understand how this community of bacteria influence health and disease. One way to study the diversity of the microbiome is to take a sample, such as a section of stool, and perform DNA sequencing to determine which types of bacteria are present. This can reveal how the composition of the gut microbiome relates to our health, but cannot confirm whether these bacteria are the cause or the effect of most diseases. To overcome this problem, researchers need to be able to grow pure strains of these bacteria in order to unravel their underlying mechanisms. For over a century, the conventional way to cultivate bacteria has been to grow them in a Petri dish. However, this method promotes the growth of more abundant, fast-growing bacterial strains. This results in a huge disconnect between the bacteria grown in a Petri dish and the diversity within the human gut, which is hindering our understanding of gut health and disease. Now, Watterson et al. have built a machine that improves the speed and number of cultivated bacterial organisms, thus paving the way for more detailed investigations of the human gut microbiome. This new system works by growing bacteria in millions of miniscule droplets which can be physically separated to help the expansion of slower growing species. Watterson et al. cultivated bacterial cells from a stool sample from a single donor using the droplet system and compared this to traditional culturing methods. The droplet technology increased the number of different organisms that were able to grow by up to four times, including those that were rare or slow-growing. Bacteria in the donor stool were then screened for populations that were resistant to antibiotics. This identified 21 antibiotic resistant bacteria which only grew in the droplets and not in Petri dishes. This droplet-based technology will make it possible to study bacterial strains that were previously difficult to grow. Furthermore, this method could help identify whether stool from a donor contains any antibiotic resistant strains, which can lead to clinical complications once transplanted. In future, this new technology could be used in laboratories or hospitals to study the role of the gut microbiome in health and disease.


Assuntos
Bactérias/efeitos dos fármacos , Técnicas Bacteriológicas/métodos , Farmacorresistência Bacteriana , Microbioma Gastrointestinal , Ensaios de Triagem em Larga Escala/métodos , Técnicas Bacteriológicas/instrumentação , Ensaios de Triagem em Larga Escala/instrumentação
9.
Sci Transl Med ; 11(507)2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462512

RESUMO

IgA is prominently secreted at mucosal surfaces and coats a fraction of the commensal microbiota, a process that is critical for intestinal homeostasis. However, the mechanisms of IgA induction and the molecular targets of these antibodies remain poorly understood, particularly in humans. Here, we demonstrate that microbiota from a subset of human individuals encode two protein "superantigens" expressed on the surface of commensal bacteria of the family Lachnospiraceae such as Ruminococcus gnavus that bind IgA variable regions and stimulate potent IgA responses in mice. These superantigens stimulate B cells expressing human VH3 or murine VH5/6/7 variable regions and subsequently bind their antibodies, allowing these microbial organisms to become highly coated with IgA in vivo. These findings demonstrate a previously unappreciated role for commensal superantigens in host-microbiota interactions. Furthermore, as superantigen-expressing strains show an uneven distribution across human populations, they should be systematically considered in studies evaluating human B cell responses and microbiota during homeostasis and disease.


Assuntos
Linfócitos B/imunologia , Microbioma Gastrointestinal/fisiologia , Superantígenos/imunologia , Animais , Clostridiales/metabolismo , Ensaio de Imunoadsorção Enzimática , Firmicutes/metabolismo , Citometria de Fluxo , Humanos , Lacticaseibacillus rhamnosus/metabolismo , Listeria monocytogenes/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Ruminococcus/metabolismo
10.
Nat Commun ; 10(1): 3153, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300646

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Nat Commun ; 10(1): 1051, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837458

RESUMO

Wolbachia is a genus of obligate intracellular bacteria found in nematodes and arthropods worldwide, including insect vectors that transmit dengue, West Nile, and Zika viruses. Wolbachia's unique ability to alter host reproductive behavior through its temperate bacteriophage WO has enabled the development of new vector control strategies. However, our understanding of Wolbachia's mobilome beyond its bacteriophages is incomplete. Here, we reconstruct near-complete Wolbachia genomes from individual ovary metagenomes of four wild Culex pipiens mosquitoes captured in France. In addition to viral genes missing from the Wolbachia reference genome, we identify a putative plasmid (pWCP), consisting of a 9.23-kbp circular element with 14 genes. We validate its presence in additional Culex pipiens mosquitoes using PCR, long-read sequencing, and screening of existing metagenomes. The discovery of this previously unrecognized extrachromosomal element opens additional possibilities for genetic manipulation of Wolbachia.


Assuntos
Culex/microbiologia , Genoma Bacteriano/genética , Metagenoma/genética , Plasmídeos/genética , Wolbachia/genética , Animais , Bacteriófagos/genética , Feminino , França , Interações entre Hospedeiro e Microrganismos/genética , Metagenômica/métodos , Mosquitos Vetores/microbiologia , Ovário/microbiologia , Análise de Sequência de DNA , Simbiose/genética , Wolbachia/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA