RESUMO
Whether metastasis in humans can be accomplished by most primary tumor cells or requires the evolution of a specialized trait remains an open question. To evaluate whether metastases are founded by non-random subsets of primary tumor lineages requires extensive, difficult-to-implement sampling. We have realized an unusually dense multi-region sampling scheme in a cohort of 26 colorectal cancer patients with peritoneal metastases, reconstructing the evolutionary history of on average 28.8 tissue samples per patient with a microsatellite-based fingerprinting assay. To assess metastatic randomness, we evaluate inter- and intra-metastatic heterogeneity relative to the primary tumor and find that peritoneal metastases are more heterogeneous than liver metastases but less diverse than locoregional metastases. Metachronous peritoneal metastases exposed to systemic chemotherapy show significantly higher inter-lesion diversity than synchronous, untreated metastases. Projection of peritoneal metastasis origins onto a spatial map of the primary tumor reveals that they often originate at the deep-invading edge, in contrast to liver and lymph node metastases which exhibit no such preference. Furthermore, peritoneal metastases typically do not share a common subclonal origin with distant metastases in more remote organs. Synthesizing these insights into an evolutionary portrait of peritoneal metastases, we conclude that the peritoneal-metastatic process imposes milder selective pressures onto disseminating cancer cells than the liver-metastatic process. Peritoneal metastases' unique evolutionary features have potential implications for staging and treatment.
RESUMO
Small molecule-mediated proteasomal degradation of proteins is a powerful tool for synthetic regulation of biological activity. To control Cas9 activity in cells, we engineered an anti-CRISPR protein, AcrIIA4, fused to a degradation (dTAG) or small molecule assisted shutoff (SMASh) tag. Co-expression of the tagged AcrIIA4 along with Cas9 and riboswitch-regulated sgRNAs enables precise tunable control of CRISPR activity by small molecule addition.
RESUMO
Whole chromosome and arm-level copy number alterations occur at high frequencies in tumors, but their selective advantages, if any, are poorly understood. Here, utilizing unbiased whole chromosome genetic screens combined with in vitro evolution to generate arm- and subarm-level events, we iteratively selected the fittest karyotypes from aneuploidized human renal and mammary epithelial cells. Proliferation-based karyotype selection in these epithelial lines modeled tissue-specific tumor aneuploidy patterns in patient cohorts in the absence of driver mutations. Hi-C-based translocation mapping revealed that arm-level events usually emerged in multiples of two via centromeric translocations and occurred more frequently in tetraploids than diploids, contributing to the increased diversity in evolving tetraploid populations. Isogenic clonal lineages enabled elucidation of pro-tumorigenic mechanisms associated with common copy number alterations, revealing Notch signaling potentiation as a driver of 1q gain in breast cancer. We propose that intrinsic, tissue-specific proliferative effects underlie tumor copy number patterns in cancer.
Assuntos
Aneuploidia , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Variações do Número de Cópias de DNA , Neoplasias/genética , Neoplasias/patologia , Translocação Genética , Evolução Molecular , Proliferação de Células/genética , Receptores Notch/genética , Receptores Notch/metabolismo , Especificidade de Órgãos/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologiaRESUMO
Focal copy-number amplification is an oncogenic event. Although recent studies have revealed the complex structure1-3 and the evolutionary trajectories4 of oncogene amplicons, their origin remains poorly understood. Here we show that focal amplifications in breast cancer frequently derive from a mechanism-which we term translocation-bridge amplification-involving inter-chromosomal translocations that lead to dicentric chromosome bridge formation and breakage. In 780 breast cancer genomes, we observe that focal amplifications are frequently connected to each other by inter-chromosomal translocations at their boundaries. Subsequent analysis indicates the following model: the oncogene neighbourhood is translocated in G1 creating a dicentric chromosome, the dicentric chromosome is replicated, and as dicentric sister chromosomes segregate during mitosis, a chromosome bridge is formed and then broken, with fragments often being circularized in extrachromosomal DNAs. This model explains the amplifications of key oncogenes, including ERBB2 and CCND1. Recurrent amplification boundaries and rearrangement hotspots correlate with oestrogen receptor binding in breast cancer cells. Experimentally, oestrogen treatment induces DNA double-strand breaks in the oestrogen receptor target regions that are repaired by translocations, suggesting a role of oestrogen in generating the initial translocations. A pan-cancer analysis reveals tissue-specific biases in mechanisms initiating focal amplifications, with the breakage-fusion-bridge cycle prevalent in some and the translocation-bridge amplification in others, probably owing to the different timing of DNA break repair. Our results identify a common mode of oncogene amplification and propose oestrogen as its mechanistic origin in breast cancer.
Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Amplificação de Genes , Oncogenes , Translocação Genética , Feminino , Humanos , Neoplasias da Mama/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Oncogenes/genética , Translocação Genética/genética , Genoma Humano/genética , Quebras de DNA de Cadeia Dupla , Especificidade de ÓrgãosRESUMO
The TFE3 and MITF master transcription factors maintain metabolic homeostasis by regulating lysosomal, melanocytic, and autophagy genes. Previous studies posited that their cytosolic retention by 14-3-3, mediated by the Rag GTPases-mTORC1, was key for suppressing transcriptional activity in the presence of nutrients. Here, we demonstrate using mammalian cells that regulated protein stability plays a fundamental role in their control. Amino acids promote the recruitment of TFE3 and MITF to the lysosomal surface via the Rag GTPases, activating an evolutionarily conserved phospho-degron and leading to ubiquitination by CUL1ß-TrCP and degradation. Elucidation of the minimal functional degron revealed a conserved alpha-helix required for interaction with RagA, illuminating the molecular basis for a severe neurodevelopmental syndrome caused by missense mutations in TFE3 within the RagA-TFE3 interface. Additionally, the phospho-degron is recurrently lost in TFE3 genomic translocations that cause kidney cancer. Therefore, two divergent pathologies converge on the loss of protein stability regulation by nutrients.
Assuntos
Aminoácidos , Fator de Transcrição Associado à Microftalmia , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Aminoácidos/metabolismo , Nutrientes , Estabilidade Proteica , Lisossomos/genética , Lisossomos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Mamíferos/metabolismoRESUMO
The GATA4 transcription factor acts as a master regulator of development of multiple tissues. GATA4 also acts in a distinct capacity to control a stress-inducible pro-inflammatory secretory program that is associated with senescence, a potent tumor suppression mechanism, but also operates in non-senescent contexts such as tumorigenesis. This secretory pathway is composed of chemokines, cytokines, growth factors, and proteases. Since GATA4 is deleted or epigenetically silenced in cancer, here we examine the role of GATA4 in tumorigenesis in mouse models through both loss-of-function and overexpression experiments. We find that GATA4 promotes non-cell autonomous tumor suppression in multiple model systems. Mechanistically, we show that Gata4-dependent tumor suppression requires cytotoxic CD8 T cells and partially requires the secreted chemokine CCL2. Analysis of transcriptome data in human tumors reveals reduced lymphocyte infiltration in GATA4-deficient tumors, consistent with our murine data. Notably, activation of the GATA4-dependent secretory program combined with an anti-PD-1 antibody robustly abrogates tumor growth in vivo.
Assuntos
Transporte Biológico/fisiologia , Fator de Transcrição GATA4/metabolismo , Neoplasias/metabolismo , Linfócitos T Citotóxicos/metabolismo , Animais , Anticorpos Monoclonais Humanizados , Quimiocina CCL2/metabolismo , Fator de Transcrição GATA4/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio , Humanos , Evasão da Resposta Imune , Pulmão/patologia , Melanoma , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , TranscriptomaRESUMO
Understanding the genetic control of human embryonic stem cell function is foundational for developmental biology and regenerative medicine. Here we describe an integrated genome-scale loss- and gain-of-function screening approach to identify genetic networks governing embryonic stem cell proliferation and differentiation into the three germ layers. We identified a deep link between pluripotency maintenance and survival by showing that genetic alterations that cause pluripotency dissolution simultaneously increase apoptosis resistance. We discovered that the chromatin-modifying complex SAGA and in particular its subunit TADA2B are central regulators of pluripotency, survival, growth, and lineage specification. Joint analysis of all screens revealed that genetic alterations that broadly inhibit differentiation across multiple germ layers drive proliferation and survival under pluripotency-maintaining conditions and coincide with known cancer drivers. Our results show the power of integrated multilayer genetic screening for the robust mapping of complex genetic networks.
Assuntos
Células-Tronco Embrionárias Humanas , Diferenciação Celular/genética , Células-Tronco Embrionárias , Mutação com Ganho de Função , Camadas Germinativas , HumanosRESUMO
Aneuploidy is ubiquitous in cancer and plays a pivotal, early role in tumor evolution. It must therefore be avoided, and two recent papers highlight the roles of p53, senescence, and the immune system in preventing the outgrowth of aneuploid clones in tissue culture. These mechanisms are likely to synergize to maintain diploid cell populations.