Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
PLoS Comput Biol ; 20(2): e1011870, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38335225

RESUMO

Chloroplasts are photosynthetic organelles in algal and plant cells that contain their own genome. Chloroplast genomes are commonly used in evolutionary studies and taxonomic identification and are increasingly becoming a target for crop improvement studies. As DNA sequencing becomes more affordable, researchers are collecting vast swathes of high-quality whole-genome sequence data from laboratory and field settings alike. Whole tissue read libraries sequenced with the primary goal of understanding the nuclear genome will inadvertently contain many reads derived from the chloroplast genome. These whole-genome, whole-tissue read libraries can additionally be used to assemble chloroplast genomes with little to no extra cost. While several tools exist that make use of short-read second generation and third-generation long-read sequencing data for chloroplast genome assembly, these tools may have complex installation steps, inadequate error reporting, poor expandability, and/or lack scalability. Here, we present CLAW (Chloroplast Long-read Assembly Workflow), an easy to install, customise, and use Snakemake tool to assemble chloroplast genomes from chloroplast long-reads found in whole-genome read libraries (https://github.com/aaronphillips7493/CLAW). Using 19 publicly available reference chloroplast genome assemblies and long-read libraries from algal, monocot and eudicot species, we show that CLAW can rapidly produce chloroplast genome assemblies with high similarity to the reference assemblies. CLAW was designed such that users have complete control over parameterisation, allowing individuals to optimise CLAW to their specific use cases. We expect that CLAW will provide researchers (with varying levels of bioinformatics expertise) with an additional resource useful for contributing to the growing number of publicly available chloroplast genome assemblies.


Assuntos
Genoma de Cloroplastos , Humanos , Genoma de Cloroplastos/genética , Fluxo de Trabalho , Análise de Sequência de DNA , Biologia Computacional , Cloroplastos/genética , Sequenciamento de Nucleotídeos em Larga Escala
2.
Artigo em Inglês | MEDLINE | ID: mdl-36795096

RESUMO

Six strains, KI11_D11T, KI4_B1, KI11_C11T, KI16_H9T, KI4_A6T and KI3_B9T, were isolated from insects and flowers on Kangaroo Island, South Australia. On the basis of 16S rRNA gene phylogeny, strains KI11_D11T, KI4_B1, KI11_C11T, KI16_H9T, KI4_A6T were found to be closely related to Fructilactobacillus ixorae Ru20-1T. Due to the lack of a whole genome sequence for this species, whole genome sequencing of Fructilactobacillus ixorae Ru20-1T was undertaken. KI3_B9T was found to be closely related to Fructobacillus tropaeoli F214-1T. Utilizing core gene phylogenetics and whole genome analyses, such as determination of AAI, ANI and dDDH, we propose that these six isolates represent five novel species with the names Fructilactobacillus cliffordii (KI11_D11T= LMG 32130T = NBRC 114988T), Fructilactobacillus hinvesii (KI11_C11T = LMG 32129T = NBRC 114987T), Fructilactobacillus myrtifloralis (KI16_H9T= LMG 32131T = NBRC 114989T) Fructilactobacillus carniphilus (KI4_A6T = LMG 32127T = NBRC 114985T) and Fructobacillus americanaquae (KI3_B9T = LMG 32124T = NBRC 114983T). Chemotaxonomic analyses detected no fructophilic characters for these strains of member of the genus Fructilactobacillus. KI3_B9T was found to be obligately fructophilic, similarly to its phylogenetic neighbours in the genus Fructobacillus. This study represents the first isolation, to our knowledge, of novel species in the family Lactobacillaceae from the Australian wild.


Assuntos
Lactobacillales , Animais , Lactobacillales/genética , Filogenia , RNA Ribossômico 16S/genética , Austrália do Sul , Análise de Sequência de DNA , DNA Bacteriano/genética , Composição de Bases , Ácidos Graxos/química , Austrália , Técnicas de Tipagem Bacteriana , Lactobacillus , Insetos , Flores/microbiologia
3.
New Phytol ; 238(2): 904-915, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36683442

RESUMO

Using microscopy to investigate stomatal behaviour is common in plant physiology research. Manual inspection and measurement of stomatal pore features is low throughput, relies upon expert knowledge to record stomatal features accurately, requires significant researcher time and investment, and can represent a significant bottleneck to research pipelines. To alleviate this, we introduce StomaAI (SAI): a reliable, user-friendly and adaptable tool for stomatal pore and density measurements via the application of deep computer vision, which has been initially calibrated and deployed for the model plant Arabidopsis (dicot) and the crop plant barley (monocot grass). SAI is capable of producing measurements consistent with human experts and successfully reproduced conclusions of published datasets. SAI boosts the number of images that can be evaluated in a fraction of the time, so can obtain a more accurate representation of stomatal traits than is routine through manual measurement. An online demonstration of SAI is hosted at https://sai.aiml.team, and the full local application is publicly available for free on GitHub through https://github.com/xdynames/sai-app.


Assuntos
Arabidopsis , Humanos , Fenótipo , Computadores , Estômatos de Plantas/fisiologia
4.
Sci Rep ; 13(1): 1528, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707685

RESUMO

Plantago ovata is cultivated for production of its seed husk (psyllium). When wet, the husk transforms into a mucilage with properties suitable for pharmaceutical industries, utilised in supplements for controlling blood cholesterol levels, and food industries for making gluten-free products. There has been limited success in improving husk quantity and quality through breeding approaches, partly due to the lack of a reference genome. Here we constructed the first chromosome-scale reference assembly of P. ovata using a combination of 5.98 million PacBio and 636.5 million Hi-C reads. We also used corrected PacBio reads to estimate genome size and transcripts to generate gene models. The final assembly covers ~ 500 Mb with 99.3% gene set completeness. A total of 97% of the sequences are anchored to four chromosomes with an N50 of ~ 128.87 Mb. The P. ovata genome contains 61.90% repeats, where 40.04% are long terminal repeats. We identified 41,820 protein-coding genes, 411 non-coding RNAs, 108 ribosomal RNAs, and 1295 transfer RNAs. This genome will provide a resource for plant breeding programs to, for example, reduce agronomic constraints such as seed shattering, increase psyllium yield and quality, and overcome crop disease susceptibility.


Assuntos
Plantago , Psyllium , Plantago/genética , Melhoramento Vegetal , Cromossomos , Genoma
6.
Artigo em Inglês | MEDLINE | ID: mdl-36094463

RESUMO

Four strains, SG5_A10T, SGEP1_A5T, SG4_D2T, and SG4_A1T, were isolated from the honey or homogenate of Australian stingless bee species Tetragonula carbonaria and Austroplebeia australis. Based on 16S rRNA gene phylogeny, core gene phylogenetics, whole genome analyses such as determination of amino acid identity (AAI), cAAI of conserved genes, average nucleotide identity (ANI), and digital DNA-DNA hybridization (dDDH), chemotaxonomic analyses, and the novel isolation sources and unique geography, we propose three new species and one genus with the names Apilactobacillus apisilvae sp. nov. (SG5_A10T = LMG 32133T = NBRC 114991T), Bombilactobacillus thymidiniphilus sp. nov. (SG4_A1T = LMG 32125T = NBRC 114984T), Bombilactobacillus folatiphilus sp. nov. (SG4_D2T = LMG 32126T = NBRC 115004T) and Nicolia spurrieriana sp. nov. (SGEP1_A5T = LMG 32134T = NBRC 114992T). Three out of the four strains were found to be fructophilic, where SG5_A10T and SGEP1_A5T belong to obligately fructophilic lactic acid bacteria, and SG4_D2T representing a new type denoted here as kinetically fructophilic. This study represents the first published lactic acid bacterial species associated with the unique niche of Australian stingless bees.


Assuntos
Lactobacillales , Animais , Austrália , Técnicas de Tipagem Bacteriana , Composição de Bases , Abelhas , DNA Bacteriano/genética , Ácidos Graxos/química , Ácido Láctico , Lactobacillales/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Sci Rep ; 12(1): 10823, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752642

RESUMO

Oryza australiensis is a wild rice native to monsoonal northern Australia. The International Oryza Map Alignment Project emphasises its significance as the sole representative of the EE genome clade. Assembly of the O. australiensis genome has previously been challenging due to its high Long Terminal Repeat (LTR) retrotransposon (RT) content. Oxford Nanopore long reads were combined with Illumina short reads to generate a high-quality ~ 858 Mbp genome assembly within 850 contigs with 46× long read coverage. Reference-guided scaffolding increased genome contiguity, placing 88.2% of contigs into 12 pseudomolecules. After alignment to the Oryza sativa cv. Nipponbare genome, we observed several structural variations. PacBio Iso-Seq data were generated for five distinct tissues to improve the functional annotation of 34,587 protein-coding genes and 42,329 transcripts. We also report SNV numbers for three additional O. australiensis genotypes based on Illumina re-sequencing. Although genetic similarity reflected geographical separation, the density of SNVs also correlated with our previous report on variations in salinity tolerance. This genome re-confirms the genetic remoteness of the O. australiensis lineage within the O. officinalis genome complex. Assembly of a high-quality genome for O. australiensis provides an important resource for the discovery of critical genes involved in development and stress tolerance.


Assuntos
Oryza , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Oryza/genética , Retroelementos/genética , Análise de Sequência de DNA
8.
F1000Res ; 11: 614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721598

RESUMO

High-yielding crop varieties will become critical in meeting the future food demand in the face of worsening weather extremes and threatening biotic stressors. The bread wheat cultivar Sonmez-2001 is a registered variety that is notable for its performance under low-irrigation conditions, which further improves upon irrigation. Additionally, Sonmez-2001 is resilient against certain biotic stressors, particularly soil-borne pathogens. Here, we provide a reference-guided whole genome sequence of Sonmez-2001, assembled into 21 chromosomes of the A, B and D genomes and totaling 13.3 gigabase-pairs in length. Additionally, a de novo assembly of an additional 1.05 gigabase-pairs was generated that represents either Sonmez-specific sequences or sequences that considerably diverged between Sonmez and Chinese Spring. Within this de novo assembly, we identified 35 gene models, of which 11 were high-confidence, that may contribute to the favorable traits of this high-performing variety. We identified up to 24 million sequence variants, of which up to 2.4% reside in coding sequences, that can be used to develop molecular markers that should be of immediate use to the cereal community.


Assuntos
Pão , Triticum , Cromossomos de Plantas , Genoma de Planta , Análise de Sequência de DNA , Triticum/genética
9.
Funct Plant Biol ; 48(11): 1148-1160, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34600599

RESUMO

Salinity tolerance in bread wheat is frequently reported to be associated with low leaf sodium (Na+) concentrations. However, the Portuguese landrace, Mocho de Espiga Branca, accumulates significantly higher leaf Na+ but has comparable salinity tolerance to commercial bread wheat cultivars. To determine the genetic loci associated with the salinity tolerance of this landrace, an F2 mapping population was developed by crossing Mocho de Espiga Branca with the Australian cultivar Gladius. The population was phenotyped for 19 salinity tolerance subtraits using both non-destructive and destructive techniques. Genotyping was performed using genotyping-by-sequencing (GBS). Genomic regions associated with salinity tolerance were detected on chromosomes 1A, 1D, 4B and 5A for the subtraits of relative and absolute growth rate (RGR, AGR respectively), and on chromosome 2A, 2B, 4D and 5D for Na+, potassium (K+) and chloride (Cl-) accumulation. Candidate genes that encode proteins associated with salinity tolerance were identified within the loci including Na+/H+ antiporters, K+ channels, H+-ATPase, calcineurin B-like proteins (CBLs), CBL-interacting protein kinases (CIPKs), calcium dependent protein kinases (CDPKs) and calcium-transporting ATPase. This study provides a new insight into the genetic control of salinity tolerance in a Na+ accumulating bread wheat to assist with the future development of salt tolerant cultivars.


Assuntos
Tolerância ao Sal , Triticum , Austrália , Pão , Potássio/análise , Tolerância ao Sal/genética , Triticum/genética
10.
BMC Res Notes ; 14(1): 343, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34461984

RESUMO

OBJECTIVE: Soybean is an important plant used for food, feed and many industrial purposes. Interest in soybean breeding is growing in Central Europe, including Poland. A very large number of soybean accessions are stored in gene banks, but less than 1% of them have been used for breeding. Here, we present genotypic data as well as phenotypic data on plant and seed performance, including seed chlorophyll fluorescence traits, and on yield components within a collection of soybean accessions that are conserved in the Polish Gene Bank at the Plant Breeding and Acclimatization Institute-National Research Institute. RESULTS: The materials used consisted of sub-collections: 79 Polish genotypes, including old traditional cultivars, 24 Canadian, 21 American, 21 Swedish and 31 from Central and Eastern European Countries, 9 from France and 6 from Japan. In total, 9602 high quality SNPs were derived from DArTseq, a method utilising GBS technology. GWAS, performed with the BLINK model, revealed that a total of 41 significant SNPs were mapped for days to flowering, flower colour, plant height, days to pod formation, 100 seed weight, pod colour, seeds and hilum colour and steady-state chlorophyll fluorescence under light (Ft_Lss). This is the first report about the diversity of traditional old Polish soybean cultivars.


Assuntos
Estudo de Associação Genômica Ampla , Glycine max , Canadá , Genoma de Planta , Melhoramento Vegetal , Polônia , Glycine max/genética , Estados Unidos
11.
Funct Plant Biol ; 48(4): 434-447, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33332999

RESUMO

Hybrid breeding in wheat has the potential to boost yields. An efficient hybrid seed production system requires elite pollinators; however, such germplasm is limited among modern cultivars. Piko, a winter wheat (Triticum aestivum L.) cultivar, has been identified as a superior pollinator and has been used in Europe. Piko has favourable pollinator traits for anther extrusion, anther length, pollen mass and hybrid seed set. However, the genetic factors responsible for Piko's favourable traits are largely unknown. Here, we report on the genetic analysis of a Piko-derived F2 mapping population. We confirmed that Piko's Rht-D1a allele for tall stature is associated with large anthers and high anther extrusion. However, Rht-D1 was not found to be associated with anther filament length, confirmed by near isogenic lines. Piko's photoperiod sensitive Ppd-B1b allele shows an association with increased spike length, more spikelets and spike architecture traits, while the insensitive Ppd-B1a allele is linked with high anther extrusion and larger anthers. We identified an anther extrusion quantitative trait locus (QTL) on chromosome 6A that showed significantly biased transmission of the favourable Piko allele amongst F2 progenies. The Piko allele is completely absent in the distal 6AS region and the central 6A region revealed a significantly lower ratio (<8%) of F2 with homozygous Piko alleles. Our study provided further evidence for the effects of Rht-D1 and Ppd-B1 loci on multiple pollinator traits and a novel anther extrusion QTL that exhibits segregation distortion.


Assuntos
Melhoramento Vegetal , Triticum , Europa (Continente) , Fenótipo , Locos de Características Quantitativas/genética , Triticum/genética
12.
Pathog Dis ; 79(1)2021 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-33301554

RESUMO

Factors facilitating the chronicity of otitis media (OM) in children are, to date, not fully understood. An understanding of molecular factors aiding bacterial persistence within the middle ear during OM could reveal pathways required for disease. This study performed a detailed analysis of Streptococcus pneumoniae populations isolated from the nasopharynx and middle ear of one OM case. Isolates were assessed for growth in vitro and infection in a mouse intranasal challenge model. Whole genome sequencing was performed to compare the nasopharyngeal and middle ear isolates. The middle ear isolate displayed a reduced rate of growth and enhanced potential to transit to the middle ear in a murine model. The middle ear population possessed a single nucleotide polymorphism (SNP) in the IgA1 protease gene igA, predicted to render its product non-functional. Allelic exchange mutagenesis of the igA alleles from the genetic variant middle ear and nasopharyngeal isolates was able to reverse the niche-adaptation phenotype in the murine model. These results indicate the potential role of a SNP in the gene encoding the IgA1 protease, in determining S. pneumoniae adaptation to the middle ear during chronic OM. In contrast, a functional IgA1 protease was associated with increased colonisation of the nasopharynx.


Assuntos
Adaptação Biológica , Orelha Média/microbiologia , Nasofaringe/microbiologia , Otite Média/microbiologia , Serina Endopeptidases/genética , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/genética , Animais , Doença Crônica , DNA Bacteriano , Modelos Animais de Doenças , Humanos , Lactente , Masculino , Camundongos , Mutagênese , Fenótipo , Infecções Pneumocócicas/microbiologia , Polimorfismo de Nucleotídeo Único , Streptococcus pneumoniae/isolamento & purificação , Sequenciamento Completo do Genoma
13.
BMC Biotechnol ; 19(1): 71, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684940

RESUMO

BACKGROUND: The CRISPR-Cas9 system is a powerful and versatile tool for crop genome editing. However, achieving highly efficient and specific editing in polyploid species can be a challenge. The efficiency and specificity of the CRISPR-Cas9 system depends critically on the gRNA used. Here, we assessed the activities and specificities of seven gRNAs targeting 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in hexaploid wheat protoplasts. EPSPS is the biological target of the widely used herbicide glyphosate. RESULTS: The seven gRNAs differed substantially in their on-target activities, with mean indel frequencies ranging from 0% to approximately 20%. There was no obvious correlation between experimentally determined and in silico predicted on-target gRNA activity. The presence of a single mismatch within the seed region of the guide sequence greatly reduced but did not abolish gRNA activity, whereas the presence of an additional mismatch, or the absence of a PAM, all but abolished gRNA activity. Large insertions (≥20 bp) of DNA vector-derived sequence were detected at frequencies up to 8.5% of total indels. One of the gRNAs exhibited several properties that make it potentially suitable for the development of non-transgenic glyphosate resistant wheat. CONCLUSIONS: We have established a rapid and reliable method for gRNA validation in hexaploid wheat protoplasts. The method can be used to identify gRNAs that have favourable properties. Our approach is particularly suited to polyploid species, but should be applicable to any plant species amenable to protoplast transformation.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma de Planta/genética , RNA Guia de Cinetoplastídeos/genética , Triticum/genética , Protoplastos/metabolismo
14.
Mol Biol Evol ; 36(12): 2922-2924, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31411700

RESUMO

Comparing newly obtained and previously known nucleotide and amino-acid sequences underpins modern biological research. BLAST is a well-established tool for such comparisons but is challenging to use on new data sets. We combined a user-centric design philosophy with sustainable software development approaches to create Sequenceserver, a tool for running BLAST and visually inspecting BLAST results for biological interpretation. Sequenceserver uses simple algorithms to prevent potential analysis errors and provides flexible text-based and visual outputs to support researcher productivity. Our software can be rapidly installed for use by individuals or on shared servers.


Assuntos
Biologia Computacional/métodos , Técnicas Genéticas , Software
15.
Plant J ; 99(4): 673-685, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31009129

RESUMO

Nuclear male-sterile mutants with non-conditional, recessive and strictly monogenic inheritance are useful for both hybrid and conventional breeding systems, and have long been a research focus for many crops. In allohexaploid wheat, however, genic redundancy results in rarity of such mutants, with the ethyl methanesulfonate-induced mutant ms5 among the few reported to date. Here, we identify TaMs5 as a glycosylphosphatidylinositol-anchored lipid transfer protein required for normal pollen exine development, and by transgenic complementation demonstrate that TaMs5-A restores fertility to ms5. We show ms5 locates to a centromere-proximal interval and has a sterility inheritance pattern modulated by TaMs5-D but not TaMs5-B. We describe two allelic forms of TaMs5-D, one of which is non-functional and confers mono-factorial inheritance of sterility. The second form is functional but shows incomplete dominance. Consistent with reduced functionality, transcript abundance in developing anthers was found to be lower for TaMs5-D than TaMs5-A. At the 3B homoeolocus, we found only non-functional alleles among 178 diverse hexaploid and tetraploid wheats that include landraces and Triticum dicoccoides. Apparent ubiquity of non-functional TaMs5-B alleles suggests loss-of-function arose early in wheat evolution and, therefore, at most knockout of two homoeoloci is required for sterility. This work provides genetic information, resources and tools required for successful implementation of ms5 sterility in breeding systems for bread and durum wheats.


Assuntos
Proteínas de Plantas/metabolismo , Triticum/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Infertilidade das Plantas/genética , Infertilidade das Plantas/fisiologia , Proteínas de Plantas/genética , Pólen/metabolismo , Pólen/fisiologia , Triticum/genética , Triticum/fisiologia
16.
Plant Biotechnol J ; 17(10): 1905-1913, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30839150

RESUMO

The development and adoption of hybrid seed technology have led to dramatic increases in agricultural productivity. However, it has been a challenge to develop a commercially viable platform for the production of hybrid wheat (Triticum aestivum) seed due to wheat's strong inbreeding habit. Recently, a novel platform for commercial hybrid seed production was described. This hybridization platform utilizes nuclear male sterility to force outcrossing and has been applied to maize and rice. With the recent molecular identification of the wheat male fertility gene Ms1, it is now possible to extend the use of this novel hybridization platform to wheat. In this report, we used the CRISPR/Cas9 system to generate heritable, targeted mutations in Ms1. The introduction of biallelic frameshift mutations into Ms1 resulted in complete male sterility in wheat cultivars Fielder and Gladius, and several of the selected male-sterile lines were potentially non-transgenic. Our study demonstrates the utility of the CRISPR/Cas9 system for the rapid generation of male sterility in commercial wheat cultivars. This represents an important step towards capturing heterosis to improve wheat yields, through the production and use of hybrid seed on an industrial scale.


Assuntos
Sistemas CRISPR-Cas , Infertilidade das Plantas , Sementes , Triticum/genética , Mutação da Fase de Leitura , Técnicas de Inativação de Genes , Genes de Plantas , Poliploidia
17.
Theor Appl Genet ; 132(7): 1965-1979, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30899967

RESUMO

KEY MESSAGE: Elite wheat pollinators are critical for successful hybrid breeding. We identified Rht-B1 and Ppd-D1 loci affecting multiple pollinator traits and therefore represent major targets for improving hybrid seed production. Hybrid breeding has a great potential to significantly boost wheat yields. Ideal male pollinators would be taller in stature, contain many spikelets well-spaced along the spike and exhibit high extrusion of large anthers. Most importantly, flowering time would match with that of the female parent. Available genetic resources for developing an elite wheat pollinator are limited, and the genetic basis for many of these traits is largely unknown. Here, we report on the genetic analysis of pollinator traits using biparental mapping populations. We identified two anther extrusion QTLs of medium effect, one on chromosome 1BL and the other on 4BS coinciding with the semi-dwarfing Rht-B1 locus. The effect of Rht-B1 alleles on anther extrusion is genotype dependent, while tall plant Rht-B1a allele is consistently associated with large anthers. Multiple QTLs were identified at the Ppd-D1 locus for anther length, spikelet number and spike length, with the photoperiod-sensitive Ppd-D1b allele associated with favourable pollinator traits in the populations studied. We also demonstrated that homeoloci, Rht-D1 and Ppd-B1, influence anther length among other traits. These results suggest that combinations of Rht-B1 and Ppd-D1 alleles control multiple pollinator traits and should be major targets of hybrid wheat breeding programs.


Assuntos
Flores/genética , Polinização/genética , Locos de Características Quantitativas , Triticum/genética , Alelos , Mapeamento Cromossômico , Genes de Plantas , Genótipo , Fenótipo , Fotoperíodo
18.
Brief Bioinform ; 20(2): 384-389, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29106479

RESUMO

EMBL Australia Bioinformatics Resource (EMBL-ABR) is a developing national research infrastructure, providing bioinformatics resources and support to life science and biomedical researchers in Australia. EMBL-ABR comprises 10 geographically distributed national nodes with one coordinating hub, with current funding provided through Bioplatforms Australia and the University of Melbourne for its initial 2-year development phase. The EMBL-ABR mission is to: (1) increase Australia's capacity in bioinformatics and data sciences; (2) contribute to the development of training in bioinformatics skills; (3) showcase Australian data sets at an international level and (4) enable engagement in international programs. The activities of EMBL-ABR are focussed in six key areas, aligning with comparable international initiatives such as ELIXIR, CyVerse and NIH Commons. These key areas-Tools, Data, Standards, Platforms, Compute and Training-are described in this article.


Assuntos
Disciplinas das Ciências Biológicas , Pesquisa Biomédica , Biologia Computacional/educação , Biologia Computacional/métodos , Curadoria de Dados/métodos , Austrália , Humanos
19.
BMC Genomics ; 19(1): 941, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30558550

RESUMO

BACKGROUND: Democratising the growing body of whole genome sequencing data available for Triticum aestivum (bread wheat) has been impeded by the lack of a genome reference and the large computational requirements for analysing these data sets. RESULTS: DAWN (Diversity Among Wheat geNomes) integrates data from the T. aestivum Chinese Spring (CS) IWGSC RefSeq v1.0 genome with public WGS and exome data from 17 and 62 accessions respectively, enabling researchers and breeders alike to investigate genotypic differences between wheat accessions at the level of whole chromosomes down to individual genes. CONCLUSIONS: Using DAWN we show that it is possible to visualise small and large chromosomal deletions, identify haplotypes at a glance and spot the consequences of selective breeding. DAWN allows us to detect the break points of alien introgression segments brought into an accession when transferring desired genes. Furthermore, we can find possible explanations for reduced recombination in parts of a chromosome, we can predict regions with linkage drag, and also look at diversity in centromeric regions.


Assuntos
Bases de Dados Genéticas , Genoma de Planta , Triticum/genética , Centrômero/genética , Genótipo , Haplótipos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sequenciamento do Exoma
20.
Genome Biol ; 19(1): 112, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30115128

RESUMO

BACKGROUND: Numerous scaffold-level sequences for wheat are now being released and, in this context, we report on a strategy for improving the overall assembly to a level comparable to that of the human genome. RESULTS: Using chromosome 7A of wheat as a model, sequence-finished megabase-scale sections of this chromosome were established by combining a new independent assembly using a bacterial artificial chromosome (BAC)-based physical map, BAC pool paired-end sequencing, chromosome-arm-specific mate-pair sequencing and Bionano optical mapping with the International Wheat Genome Sequencing Consortium RefSeq v1.0 sequence and its underlying raw data. The combined assembly results in 18 super-scaffolds across the chromosome. The value of finished genome regions is demonstrated for two approximately 2.5 Mb regions associated with yield and the grain quality phenotype of fructan carbohydrate grain levels. In addition, the 50 Mb centromere region analysis incorporates cytological data highlighting the importance of non-sequence data in the assembly of this complex genome region. CONCLUSIONS: Sufficient genome sequence information is shown to now be available for the wheat community to produce sequence-finished releases of each chromosome of the reference genome. The high-level completion identified that an array of seven fructosyl transferase genes underpins grain quality and that yield attributes are affected by five F-box-only-protein-ubiquitin ligase domain and four root-specific lipid transfer domain genes. The completed sequence also includes the centromere.


Assuntos
Agricultura , Genoma de Planta , Fenômenos Ópticos , Mapeamento Físico do Cromossomo/métodos , Triticum/genética , Centrômero/metabolismo , Cromossomos Artificiais Bacterianos/genética , Cromossomos de Plantas/genética , Frutanos/análise , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA