Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Math Biosci ; 365: 109072, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37734537

RESUMO

The CD200 is a cell membrane protein expressed by tumor cells, and its receptor CD200 receptor (CD200R) is expressed by immune cells including macrophages and dendritic cells. The formation of CD200-CD200R inhibits the cellular functions of the targeted immune cells, so CD200 is one type of the immune checkpoint and blockade CD200-CD200R formation is a potential cancer treatment. However, the CD200 blockade has opposite treatment outcomes in different types of cancers. For instance, the CD200R deficient mice have a higher tumor load than the wild type (WT) mice in melanoma suggesting that CD200-CD200R inhibits melanoma. On the other hand, the antibody anti-CD200 treatment in pancreatic ductal adenocarcinoma (PDAC) and head and neck squamous cell carcinoma (HNSCC) significantly reduces the tumor load indicating that CD200-CD200R promotes PDAC and HNSCC. In this work, we hypothesize that different mechanisms of CD200-CD200R in tumor microenvironment could be one of the reasons for the diverse treatment outcomes of CD200 blockade in different types of cancers. We create one Ordinary Differential Equations (ODEs) model for melanoma including the inhibition of CCL8 and regulatory T cells and the switching from M2 to M1 macrophages by CD200-CD200R to capture the tumor inhibition by CD200-CD200R. We also create another ODEs model for PDAC and HNSCC including the promotion of the polarization and suppressive activities of M2 macrophages by CD200-CD200R to generate the tumor promotion by CD200-CD200R. Furthermore, we use these two models to investigate the treatment efficacy of the combination treatment between the CD200-CD200R blockade and the other immune checkpoint inhibitor, anti-PD-1. Our result shows that different mechanisms of CD200-CD200R can induce different treatment outcomes in combination treatments, namely, only the CD200-CD200R blockade reduces tumor load in melanoma and only the anti-PD-1 and CD200 knockout decrease tumor load in PDAC and HNSCC. Moreover, in melanoma, the CD200-CD200R mainly utilizes the inhibitions on M1 macrophages and dendritic cells to inhibit tumor growth, instead of M2 macrophages.

2.
Math Biosci ; 353: 108911, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36150452

RESUMO

When the immune-checkpoint programmed death-1 (PD-1) binds to its ligand programmed death ligand 1 (PD-L1) to form the complex PD-1-PD-L1, this complex inactivates immune cells resulting in cell apoptosis, downregulation of immune reaction, and tumor evasion. The antibody, anti-PD-1 or anti-PD-L1, blocks the PD-1-PD-L1 complex formation to restore the functions of T cells. Combination of anti-PD-1 with other treatment shows promising in different types of cancer treatments. Interferon-gamma (IFN-γ) plays an important role in immune responses. It is mainly regarded as a pro-inflammatory cytokine that promotes the proliferation of CD8+ T cell and cytotoxic T cell, enhances the activation of Th1 cells and CD8+ T cells, and enhances tumor elimination. However, recent studies have been discovering many anti-inflammatory functions of IFN-γ, such as promotion of the PD-L1 expression, T cell apoptosis, and tumor metastasis, as well as inhibition of the immune recognition and the killing rates by T cells. In this work, we construct a mathematical model incorporating pro-inflammatory and anti-inflammatory functions of IFN-γ to capture tumor growth under anti-PD-1 treatment in the wild type and IFN-γ null mutant melanoma. Our simulation results qualitatively fit experimental data that IFN-γ null mutant with anti-PD-1 obtains the highest tumor reduction comparing to IFN-γ null mutant without anti-PD-1 and wild type tumor with anti-PD-1 therapy. Moreover, our synergy analysis indicates that, in the combination treatment, the tumor volume decreases as either the dosage of anti-PD-1 increases or the IFN-γ production efficiency decreases. Thus, the combination of anti-PD-1 and IFN-γ blockade improves the tumor reduction comparing to the monotherapy of anti-PD-1 or the monotherapy of IFN-γ blockade. We also find a threshold curve of the minimal dosage of anti-PD-1 corresponding to the IFN-γ production efficiency to ensure the tumor reduction under the presence of IFN-γ.


Assuntos
Interferon gama , Neoplasias , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Imunoterapia , Linfócitos T Citotóxicos , Modelos Teóricos , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
3.
Bull Math Biol ; 84(8): 82, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35792958

RESUMO

CD200 is a cell membrane protein that binds to its receptor, CD200 receptor (CD200R). The CD200 positive tumor cells inhibit the cellular functions of M1 and M2 macrophages and dendritic cells (DCs) through the CD200-CD200R complex, resulting in downregulation of Interleukin-10 and Interleukin-12 productions and affecting the activation of cytotoxic T lymphocytes. In this work, we provide two ordinary differential equation models, one complete model and one simplified model, to investigate how the binding affinities of CD200R and the populations of M1 and M2 macrophages affect the functions of the CD200-CD200R complex in tumor growth. Our simulations demonstrate that (i) the impact of the CD200-CD200R complex on tumor promotion or inhibition highly depends on the binding affinity of the CD200R on M2 macrophages and DCs to the CD200 on tumor cells, and (ii) a stronger binding affinity of the CD200R on M1 macrophages or DCs to the CD200 on tumor cells induces a higher tumor cell density in the CD200 positive tumor. Thus, the CD200 blockade would be an efficient treatment method in this case. Moreover, the simplified model shows that the binding affinity of CD200R on macrophages is the major factor to determine the treatment efficacy of CD200 blockade when the binding affinities of CD200R on M1 and M2 macrophages are significantly different to each other. On the other hand, both the binding affinity of CD200R and the population of macrophages are the major factors to determine the treatment efficacy of CD200 blockade when the binding affinities of CD200R on M1 and M2 macrophages are close to each other. We also analyze the simplified model to investigate the dynamics of the positive and trivial equilibria of the CD200 positive tumor case and the CD200 deficient tumor case. The bifurcation diagrams show that when M1 macrophages dominate the population, the tumor cell density of the CD200 positive tumor is higher than the one of CD200 deficient tumor. Moreover, the dynamics of tumor cell density change from tumor elimination to tumor persistence to oscillation, as the maximal proliferation rate of tumor cells increases.


Assuntos
Conceitos Matemáticos , Neoplasias , Transformação Celular Neoplásica , Humanos , Macrófagos/metabolismo , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA