Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Transl Psychiatry ; 13(1): 167, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173343

RESUMO

Impulsivity is a multidimensional heritable phenotype that broadly refers to the tendency to act prematurely and is associated with multiple forms of psychopathology, including substance use disorders. We performed genome-wide association studies (GWAS) of eight impulsive personality traits from the Barratt Impulsiveness Scale and the short UPPS-P Impulsive Personality Scale (N = 123,509-133,517 23andMe research participants of European ancestry), and a measure of Drug Experimentation (N = 130,684). Because these GWAS implicated the gene CADM2, we next performed single-SNP phenome-wide studies (PheWAS) of several of the implicated variants in CADM2 in a multi-ancestral 23andMe cohort (N = 3,229,317, European; N = 579,623, Latin American; N = 199,663, African American). Finally, we produced Cadm2 mutant mice and used them to perform a Mouse-PheWAS ("MouseWAS") by testing them with a battery of relevant behavioral tasks. In humans, impulsive personality traits showed modest chip-heritability (~6-11%), and moderate genetic correlations (rg = 0.20-0.50) with other personality traits, and various psychiatric and medical traits. We identified significant associations proximal to genes such as TCF4 and PTPRF, and also identified nominal associations proximal to DRD2 and CRHR1. PheWAS for CADM2 variants identified associations with 378 traits in European participants, and 47 traits in Latin American participants, replicating associations with risky behaviors, cognition and BMI, and revealing novel associations including allergies, anxiety, irritable bowel syndrome, and migraine. Our MouseWAS recapitulated some of the associations found in humans, including impulsivity, cognition, and BMI. Our results further delineate the role of CADM2 in impulsivity and numerous other psychiatric and somatic traits across ancestries and species.


Assuntos
Estudo de Associação Genômica Ampla , Transtornos Relacionados ao Uso de Substâncias , Humanos , Animais , Camundongos , Fenótipo , Comportamento Impulsivo , Personalidade/genética , Polimorfismo de Nucleotídeo Único , Moléculas de Adesão Celular/genética
2.
PLoS One ; 16(2): e0245587, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33529210

RESUMO

Regulation of AMPA-type glutamate receptor (AMPAR) expression and function alters synaptic strength and is a major mechanism underlying synaptic plasticity. Although transcription is required for some forms of synaptic plasticity, the transcription factors that regulate AMPA receptor expression and signaling are incompletely understood. Here, we identify the Snail family transcription factor ces-1 in an RNAi screen for conserved transcription factors that regulate glutamatergic behavior in C. elegans. ces-1 was originally discovered as a selective cell death regulator of neuro-secretory motor neuron (NSM) and I2 interneuron sister cells in C. elegans, and has almost exclusively been studied in the NSM cell lineage. We found that ces-1 loss-of-function mutants have defects in two glutamatergic behaviors dependent on the C. elegans AMPA receptor GLR-1, the mechanosensory nose-touch response and spontaneous locomotion reversals. In contrast, ces-1 gain-of-function mutants exhibit increased spontaneous reversals, and these are dependent on glr-1 consistent with these genes acting in the same pathway. ces-1 mutants have wild type cholinergic neuromuscular junction function, suggesting that they do not have a general defect in synaptic transmission or muscle function. The effect of ces-1 mutation on glutamatergic behaviors is not due to ectopic cell death of ASH sensory neurons or GLR-1-expressing neurons that mediate one or both of these behaviors, nor due to an indirect effect on NSM sister cell deaths. Rescue experiments suggest that ces-1 may act, in part, in GLR-1-expressing neurons to regulate glutamatergic behaviors. Interestingly, ces-1 mutants suppress the increased reversal frequencies stimulated by a constitutively-active form of GLR-1. However, expression of glr-1 mRNA or GFP-tagged GLR-1 was not decreased in ces-1 mutants suggesting that ces-1 likely promotes GLR-1 function. This study identifies a novel role for ces-1 in regulating glutamatergic behavior that appears to be independent of its canonical role in regulating cell death in the NSM cell lineage.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ácido Glutâmico/metabolismo , Receptores de AMPA/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Mutação com Ganho de Função , Interneurônios/metabolismo , Locomoção/genética , Mutação com Perda de Função , Plasticidade Neuronal/genética , Interferência de RNA , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição da Família Snail/genética , Sinapses/metabolismo , Fatores de Transcrição/genética , Transgenes
3.
Cereb Cortex ; 30(1): 226-240, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31034037

RESUMO

Brain development is likely impacted by micronutrients. This is supported by the effects of the ω-3 fatty acid docosahexaenoic acid (DHA) during early neuronal differentiation, when it increases neurite growth. Aiming to delineate DHA roles in postnatal stages, we selected the visual cortex due to its stereotypic maturation. Immunohistochemistry showed that young mice that received dietary DHA from birth exhibited more abundant presynaptic and postsynaptic specializations. DHA also increased density and size of synapses in a dose-dependent manner in cultured neurons. In addition, dendritic arbors of neurons treated with DHA were more complex. In agreement with improved connectivity, DHA enhanced physiological parameters of network maturation in vitro, including bursting strength and oscillatory behavior. Aiming to analyze functional maturation of the cortex, we performed in vivo electrophysiological recordings from awake mice to measure responses to patterned visual inputs. Dietary DHA robustly promoted the developmental increase in visual acuity, without altering light sensitivity. The visual acuity of DHA-supplemented animals continued to improve even after their cortex had matured and DHA abolished the acuity plateau. Our findings show that the ω-3 fatty acid DHA promotes synaptic connectivity and cortical processing. These results provide evidence that micronutrients can support the maturation of neuronal networks.


Assuntos
Ácidos Docosa-Hexaenoicos/administração & dosagem , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Córtex Visual/efeitos dos fármacos , Córtex Visual/crescimento & desenvolvimento , Animais , Células Cultivadas , Dendritos/efeitos dos fármacos , Dendritos/fisiologia , Camundongos Endogâmicos C57BL , Vias Neurais/citologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Neurônios/citologia , Acuidade Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA