Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Metab ; 68: 101670, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36642217

RESUMO

OBJECTIVE: Skeletal muscle oxidative capacity is central to physical activity, exercise capacity and whole-body metabolism. The three estrogen-related receptors (ERRs) are regulators of oxidative metabolism in many cell types, yet their roles in skeletal muscle remain unclear. The main aim of this study was to compare the relative contributions of ERRs to oxidative capacity in glycolytic and oxidative muscle, and to determine defects associated with loss of skeletal muscle ERR function. METHODS: We assessed ERR expression, generated mice lacking one or two ERRs specifically in skeletal muscle and compared the effects of ERR loss on the transcriptomes of EDL (predominantly glycolytic) and soleus (oxidative) muscles. We also determined the consequences of the loss of ERRs for exercise capacity and energy metabolism in mice with the most severe loss of ERR activity. RESULTS: ERRs were induced in human skeletal muscle in response to an exercise bout. Mice lacking both ERRα and ERRγ (ERRα/γ dmKO) had the broadest and most dramatic disruption in skeletal muscle gene expression. The most affected pathway was "mitochondrial function", in particular Oxphos and TCA cycle genes, and transcriptional defects were more pronounced in the glycolytic EDL than the oxidative soleus. Mice lacking ERRß and ERRγ, the two isoforms expressed highly in oxidative muscles, also exhibited defects in lipid and branch chain amino acid metabolism genes, specifically in the soleus. The pronounced disruption of oxidative metabolism in ERRα/γ dmKO mice led to pale muscles, decreased oxidative capacity, histochemical patterns reminiscent of minicore myopathies, and severe exercise intolerance, with the dmKO mice unable to switch to lipid utilization upon running. ERRα/γ dmKO mice showed no defects in whole-body glucose and energy homeostasis. CONCLUSIONS: Our findings define gene expression programs in skeletal muscle that depend on different combinations of ERRs, and establish a central role for ERRs in skeletal muscle oxidative metabolism and exercise capacity. Our data reveal a high degree of functional redundancy among muscle ERR isoforms for the protection of oxidative capacity, and show that ERR isoform-specific phenotypes are driven in part, but not exclusively, by their relative levels in different muscles.


Assuntos
Músculo Esquelético , Doenças Musculares , Humanos , Camundongos , Animais , Músculo Esquelético/metabolismo , Metabolismo Energético , Isoformas de Proteínas/metabolismo , Estrogênios/metabolismo , Lipídeos
2.
Diabetes ; 69(6): 1100-1109, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32051149

RESUMO

To ensure fetal lipid supply, maternal blood triglyceride (TG) concentrations are robustly elevated during pregnancy. Interestingly, a lower increase in maternal blood TG concentrations has been observed in some obese mothers. We have shown that high-fat (HF) feeding during pregnancy significantly reduces maternal blood TG levels. Therefore, we performed this study to investigate if and how obesity alters maternal blood TG levels. Maternal obesity was established by prepregnant HF (ppHF) feeding, which avoided the dietary effect during pregnancy. We found not only that maternal blood TG concentrations in ppHF dams were remarkably lower than in control dams but also that the TG peak occurred earlier during gestation. Hepatic TG production and intestinal TG absorption were unchanged in ppHF dams, but systemic lipoprotein lipase (LPL) activity was increased, suggesting that increased blood TG clearance contributes to the decreased blood TG concentrations in ppHF dams. Although significantly higher levels of UCP1 protein were observed in interscapular brown adipose tissue (iBAT) of ppHF dams, Ucp1 gene deletion did not restore blood TG concentrations in ppHF dams. Expression of the angiopoietin-like protein 4 (ANGPTL4), a potent endogenous LPL inhibitor, was significantly increased during pregnancy. However, the pregnancy-induced elevation of blood TG was almost abolished in Angptl4 -/- dams. Compared with control dams, Angptl4 mRNA levels were significantly lower in iBAT, gonadal white adipose tissue, and livers of ppHF dams. Importantly, ectopic overexpression of ANGPTL4 restored maternal blood TG concentrations in ppHF dams. Together, these results indicate that ANGPTL4 plays a vital role in increasing maternal blood TG concentrations during pregnancy. Obesity impairs the rise of maternal blood TG concentrations by reducing ANGPTL4 expression in mice.


Assuntos
Proteína 4 Semelhante a Angiopoietina/metabolismo , Obesidade/sangue , Triglicerídeos/sangue , Proteína 4 Semelhante a Angiopoietina/genética , Animais , Dieta com Restrição de Gorduras , Dieta Hiperlipídica , Gorduras na Dieta/administração & dosagem , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Gravidez , Triglicerídeos/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
3.
Diabetes ; 68(8): 1604-1613, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31127056

RESUMO

The main objective of this study was to investigate the effect of maternal obesity on offspring's glucose metabolism during the perinatal period. Maternal obesity was established by feeding C57BL/6 mice with a high-fat (HF) diet before or during pregnancy. Our results showed that prolonged prepregnant HF feeding but not HF feeding during pregnancy significantly reduced fetal and neonatal blood glucose concentrations. Remarkably, elevated blood insulin concentrations and increased activation of insulin signaling were observed in fetuses and neonates from prepregnant HF-fed dams. In addition, significantly larger ß-cell areas were observed in pancreases of fetuses and neonates from prepregnant HF-fed dams. Although there was no significant change in placental cross-sectional area or GLUT 1 expression, prepregnant HF feeding significantly enhanced the expression of genes that control placental fatty acid supply. Interestingly, reducing fatty acid supply to the placenta and fetus by placental-specific knockout of adipose triglyceride lipase not only reduced fetal ß-cell area and blood insulin concentration but also attenuated prepregnant HF feeding-induced reduction in offspring blood glucose concentrations during the perinatal period. Together, these results indicate that placental and fetal fatty acid supply plays an important role in fetal ß-cell development, insulin secretion, and glucose metabolism. Prolonged prepregnant maternal HF feeding resembles pregravid maternal obesity in mice, which reduces fetal and neonatal blood glucose concentrations by enhancing fetal ß-cell development and insulin secretion.


Assuntos
Glicemia/metabolismo , Dieta Hiperlipídica , Desenvolvimento Fetal/fisiologia , Células Secretoras de Insulina/metabolismo , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Animais , Feminino , Insulina/sangue , Camundongos , Músculo Esquelético/metabolismo , Fosforilação , Placenta/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Proteínas Proto-Oncogênicas c-akt/metabolismo
4.
Dev Dyn ; 248(5): 363-374, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30843624

RESUMO

BACKGROUND: Numerous pathologies of pregnancy originate from placental dysfunction. It is essential to understand the functions of key genes in the placenta in order to discern the etiology of placental pathologies. A paucity of animal models that allow conditional and inducible expression of a target gene in the placenta is a major limitation for studying placental development and function. RESULTS: To study the platelet-derived growth factor receptor alpha (PDGFRα)-directed and tamoxifen-induced Cre recombinase expression in the placenta, PDGFRα-CreER mice were crossed with mT/mG dual-fluorescent reporter mice. The expression of endogenous membrane-localized enhanced green fluorescent protein (mEGFP) and/or dTomato in the placenta was examined to identify PDGFRα promoter-directed Cre expression. Pregnant PDGFRα-CreER;mT/mG mice were treated with tamoxifen at various gestational ages. Upon tamoxifen treatment, reporter protein mEGFP was observed in the junctional zone (JZ) and chorionic plate (CP). Furthermore, a single dose of tamoxifen was sufficient to induce the recombination. CONCLUSIONS: PDGFRα-CreER expression is restricted to the JZ and CP of mouse placentas. PDGFRα-CreER mice provide a useful tool to conditionally knock out or overexpress a target gene in these regions of the mouse placenta.


Assuntos
Integrases/metabolismo , Placenta/metabolismo , Regiões Promotoras Genéticas/fisiologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Animais , Feminino , Camundongos , Gravidez , Recombinação Genética , Tamoxifeno/farmacologia
5.
Int J Obes (Lond) ; 43(9): 1747-1758, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30622311

RESUMO

BACKGROUND: Excessive gestational weight gain (EGWG) closely associates with postpartum obesity. However, the causal role of EGWG in postpartum obesity has not been experimentally verified. The objective of this study was to determine whether and how EGWG causes long-term postpartum obesity. METHODS: C57BL/6 mice were fed with high-fat diet during gestation (HFFDG) or control chow, then their body composition and energy metabolism were monitored after delivery. RESULTS: We found that HFFDG significantly increased gestational weight gain. After delivery, adiposity of HFFDG-treated mice (Preg-HF) quickly recovered to the levels of controls. However, 3 months after parturition, Preg-HF mice started to gain significantly more body fat even with regular chow. The increase of body fat of Preg-HF mice was progressive with aging and by 9 months after delivery had increased 2-fold above the levels of controls. The expansion of white adipose tissue (WAT) of Preg-HF mice was manifested by hyperplasia in visceral fat and hypertrophy in subcutaneous fat. Preg-HF mice developed low energy expenditure and UCP1 expression in interscapular brown adipose tissue (iBAT) in later life. Although blood estrogen concentrations were similar between Preg-HF and control mice, a significant decrease in estrogen receptor α (ERα) expression and hypermethylation of the ERα promoter was detected in the fat of Preg-HF mice 9 months after delivery. Interestingly, hypermethylation of ERα promoter and low ERα expression were only detected in adipocyte progenitor cells in both iBAT and WAT of Preg-HF mice at the end of gestation. CONCLUSIONS: These results demonstrate that HFFDG causes long-term postpartum obesity independent of early postpartum fat retention. This study also suggests that HFFDG adversely programs long-term postpartum energy metabolism by epigenetically reducing estrogen signaling in both BAT and WAT.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Ganho de Peso na Gestação/fisiologia , Obesidade/fisiopatologia , Período Pós-Parto/fisiologia , Aumento de Peso/fisiologia , Animais , Modelos Animais de Doenças , Metabolismo Energético/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
iScience ; 2: 221-237, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29888756

RESUMO

Adrenergic stimulation of brown adipose tissue (BAT) induces acute and long-term responses. The acute adrenergic response activates thermogenesis by uncoupling oxidative phosphorylation and enabling increased substrate oxidation. Long-term, adrenergic signaling remodels BAT, inducing adaptive transcriptional changes that expand thermogenic capacity. Here, we show that the estrogen-related receptors alpha and gamma (ERRα, ERRγ) are collectively critical effectors of adrenergically stimulated transcriptional reprogramming of BAT. Mice lacking adipose ERRs (ERRαγAd-/-) have reduced oxidative and thermogenic capacity and rapidly become hypothermic when exposed to cold. ERRαγAd-/- mice treated long term with a ß3-adrenergic agonist fail to expand oxidative or thermogenic capacity and do not increase energy expenditure in response to norepinephrine (NE). Furthermore, ERRαγAd-/- mice fed a high-fat diet do not lose weight or show improved glucose tolerance when dosed with ß3-adrenergic agonists. The molecular basis of these defects is the finding that ERRs mediate the bulk of the transcriptional response to adrenergic stimulation.

7.
Diabetes ; 66(5): 1126-1135, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28073830

RESUMO

Hypoadiponectinemia has been widely observed in patients with gestational diabetes mellitus (GDM). To investigate the causal role of hypoadiponectinemia in GDM, adiponectin gene knockout (Adipoq-/- ) and wild-type (WT) mice were crossed to produce pregnant mouse models with or without adiponectin deficiency. Adenoviral vector-mediated in vivo transduction was used to reconstitute adiponectin during late pregnancy. Results showed that Adipoq-/- dams developed glucose intolerance and hyperlipidemia in late pregnancy. Increased fetal body weight was detected in Adipoq-/- dams. Adiponectin reconstitution abolished these metabolic defects in Adipoq-/- dams. Hepatic glucose and triglyceride production rates of Adipoq-/- dams were significantly higher than those of WT dams. Robustly enhanced lipolysis was found in gonadal fat of Adipoq-/- dams. Interestingly, similar levels of insulin-induced glucose disposal and insulin signaling in metabolically active tissues in Adipoq-/- and WT dams indicated that maternal adiponectin deficiency does not reduce insulin sensitivity. However, remarkably decreased serum insulin concentrations were observed in Adipoq-/- dams. Furthermore, ß-cell mass, but not glucose-stimulated insulin release, in Adipoq-/- dams was significantly reduced compared with WT dams. Together, these results demonstrate that adiponectin plays an important role in controlling maternal metabolic adaptation to pregnancy.


Assuntos
Adaptação Fisiológica/genética , Adiponectina/deficiência , Diabetes Gestacional/genética , Intolerância à Glucose/genética , Glucose/metabolismo , Hiperlipidemias/genética , Erros Inatos do Metabolismo/genética , Adiponectina/genética , Adiponectina/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Western Blotting , Peso Corporal , Diabetes Gestacional/metabolismo , Feminino , Feto , Técnica Clamp de Glucose , Intolerância à Glucose/metabolismo , Hiperlipidemias/metabolismo , Imuno-Histoquímica , Insulina/metabolismo , Resistência à Insulina/genética , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Lipólise/genética , Fígado/metabolismo , Erros Inatos do Metabolismo/metabolismo , Camundongos , Camundongos Knockout , Tamanho do Órgão , Gravidez , Reação em Cadeia da Polimerase em Tempo Real , Triglicerídeos/metabolismo
8.
Diabetologia ; 59(11): 2417-2425, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27495989

RESUMO

AIMS/HYPOTHESIS: The main objective of this study was to investigate whether maternal adiponectin regulates fetal growth through the endocrine system in the fetal compartment. METHODS: Adiponectin knockout (Adipoq (-/-) ) mice and in vivo adenovirus-mediated reconstitution were used to study the regulatory effect of maternal adiponectin on fetal growth. Primary human trophoblast cells were treated with adiponectin and a specific peroxisome proliferator-activated receptor α (PPARα) agonist or antagonist to study the underlying mechanism through which adiponectin regulates fetal growth. RESULTS: The body weight of fetuses from Adipoq (-/-) dams was significantly greater than that of wild-type dams at both embryonic day (E)14.5 and E18.5. Adenoviral vector-mediated maternal adiponectin reconstitution attenuated the increased fetal body weight induced by maternal adiponectin deficiency. Significantly increased blood glucose, triacylglycerol and NEFA levels were observed in Adipoq (-/-) dams, suggesting that nutrient supply contributes to maternal adiponectin-regulated fetal growth. Although fetal blood IGF-1 concentrations were comparable in fetuses from Adipoq (-/-) and wild-type dams, remarkably low levels of IGF-binding protein 1 (IGFBP-1) were observed in the serum of fetuses from Adipoq (-/-) dams. IGFBP-1 was identified in the trophoblast cells of human and mouse placentas. Maternal fasting robustly increased IGFBP-1 levels in mouse placentas, while reducing fetal weight. Significantly low IGFBP-1 levels were found in placentas of Adipoq (-/-) dams. Adiponectin treatment increased IGFBP-1 levels in primary cultured human trophoblast cells, while the PPARα antagonist, MK886, abolished this stimulatory effect. CONCLUSIONS/INTERPRETATION: These results indicate that, in addition to nutrient supply, maternal adiponectin inhibits fetal growth by increasing IGFBP-1 expression in trophoblast cells.


Assuntos
Adiponectina/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Trofoblastos/metabolismo , Adiponectina/deficiência , Adiponectina/genética , Animais , Glicemia/metabolismo , Células Cultivadas , Ácidos Graxos não Esterificados/sangue , Feminino , Humanos , Indóis/farmacologia , Camundongos , Camundongos Knockout , PPAR alfa/agonistas , PPAR alfa/antagonistas & inibidores , PPAR alfa/metabolismo , Placenta/metabolismo , Gravidez , Triglicerídeos/sangue , Trofoblastos/efeitos dos fármacos
9.
Diabetes ; 65(3): 554-60, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26631739

RESUMO

The adequate control of glucose homeostasis during both gestation and early postnatal life is crucial for the development of the fetoplacental unit and adaptive physiological responses at birth. Growing evidences indicate that apelin and its receptor, APJ, which are expressed across a wide range of tissues, exert important roles in glucose homeostasis in adults. However, little is known about the function of the apelinergic system during gestation. In this study, we evaluated the activity of this system in rats, the role of apelin in fetal and neonatal glucose homeostasis, and its modulation by maternal food restriction. We found that 1) the apelinergic system was expressed at the fetoplacental interface and in numerous fetal tissues, 2) ex vivo, the placenta released high amounts of apelin in late gestation, 3) intravenous apelin injection in mothers increased the transplacental transport of glucose, and 4) intraperitoneal apelin administration in neonates increased glucose uptake in lung and muscle. Maternal food restriction drastically reduced apelinemia in both mothers and growth-restricted fetuses and altered the expression of the apelinergic system at the fetoplacental interface. Together, our data demonstrate that apelin controls fetal and neonatal glucose homeostasis and is altered by fetal growth restriction induced by maternal undernutrition.


Assuntos
Glicemia/metabolismo , Retardo do Crescimento Fetal/genética , Feto/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Desnutrição/metabolismo , Complicações na Gravidez/metabolismo , Animais , Animais Recém-Nascidos , Apelina , Receptores de Apelina , Glicemia/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Feminino , Retardo do Crescimento Fetal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 3/genética , Homeostase/efeitos dos fármacos , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Placenta/metabolismo , Gravidez , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Peptides ; 48: 134-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23954476

RESUMO

Apelin is an enteric peptide that exerts several digestive functions such as stimulation of cell proliferation and cholecystokinin (CCK) secretion. We investigated using murine enteroendocrine cell line (STC-1) and rats if apelin-13 stimulates both CCK and glucagon-like peptide 1 (GLP-1) secretions. We demonstrated that, in vitro and in vivo, apelin-13 increases the release of these two hormones in a dose-dependent manner. Present data suggest that apelin may modulate digestive functions, food intake behavior and glucose homoeostasis via apelin-induced release of enteric CCK but also through a new incretin-releasing activity on enteric GLP-1.


Assuntos
Colecistocinina/metabolismo , Sistema Digestório/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sistema Digestório/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Camundongos , Ratos
11.
Am J Physiol Regul Integr Comp Physiol ; 299(1): R101-10, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20463183

RESUMO

Several studies indicate that maternal undernutrition sensitizes the offspring to the development of metabolic disorders, such as obesity. Using a model of perinatal maternal 50% food-restricted diet (FR50), we recently reported that rat neonates from undernourished mothers exhibit decreased leptin plasma levels associated with alterations of hypothalamic proopiomelanocortin system. The present study aimed at examining the consequences of FR50 on the brain-adipose axis in male rat neonates. Using quantitative RT-PCR array containing 84 obesity-related genes, we demonstrated that most of the genes involved in energy metabolism regulation are expressed in rat gonadal white adipose tissue (WAT) and are sensitive to maternal perinatal undernutrition (MPU). In contrast, hypothalamic gene expression was not substantially affected by MPU. Gene expression of uncoupling protein 1 (UCP1), a marker of brown adipocytes, showed an almost 400-fold stimulation in postnatal day 21 (PND21) FR50 animals, suggesting that their gonadal WAT possesses a brown-like phenotype. This was confirmed by histological and immunoshistochemical procedures, which demonstrated that PND21 FR50 gonadal adipocytes are multilocular, resembling those present in interscapular brown adipose tissue, and exhibit an overexpression of UCP1 and neuropeptide Y (NPY) at the protein level. Control animals contained almost exclusively "classical" unilocular white adipocytes that did not show high UCP1 and NPY labeling. After weaning, FR50 animals exhibited a transient hyperphagia that was associated with the disappearance of brown-like fat pads in PND30 WAT. Our results demonstrate that MPU delays the maturation of gonadal WAT during critical developmental time windows, suggesting that it could have long-term consequences on body weight regulation in the offspring.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo/metabolismo , Desnutrição , Adipócitos/química , Adipócitos/metabolismo , Tecido Adiposo/química , Tecido Adiposo Marrom/química , Tecido Adiposo Branco/metabolismo , Animais , Animais Recém-Nascidos , Peso Corporal/genética , Peso Corporal/fisiologia , Metabolismo Energético/genética , Expressão Gênica , Hipotálamo/química , Hipotálamo/metabolismo , Leptina/genética , Leptina/metabolismo , Masculino , Desnutrição/genética , Desnutrição/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Obesidade/genética , Obesidade/metabolismo , Fenótipo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Proteínas/genética , Proteínas/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA