Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol Glob ; 3(3): 100267, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38800615

RESUMO

Background: Forkhead box protein N1 (FOXN1) transcription factor plays an essential role in the development of thymic epithelial cells, required for T-cell differentiation, maturation, and function. Biallelic pathogenic variants in FOXN1 cause severe combined immunodeficiency (SCID). More recently, heterozygous variants in FOXN1, identified by restricted gene panels, were also implicated with causing a less severe and variable immunodeficiency. Objective: We undertook longitudinal follow-up and advanced genetic investigations, including whole exome sequencing and whole genome sequencing, of newborns with a heterozygous variant in FOXN1. Methods: Five patients (3 female, 2 male) have been followed since they were first detected with low T-cell receptor excision circles during newborn screening for SCID. Patients underwent immune evaluation as well as genetic testing, including a primary immunodeficiency panel, whole exome sequencing, and whole genome sequencing in some cases. Results: Median follow-up time was 6.5 years. Initial investigations revealed low CD3+ T lymphocytes in all patients. One patient presented with extremely low lymphocyte counts and depressed phytohemagglutinin responses leading to a tentative diagnosis of SCID. Over a period of 2 years, CD3+ T-cell counts rose, although in some patients it remained borderline low. One of 5 children continues to experience recurrent upper respiratory infections and asthma episodes. The remaining are asymptomatic except for eczema in 2 of 5 cases. Lymphocyte proliferation responses to phytohemagglutinin were initially low in 3 patients but normalized by age 10 months. In 3 of 5 cases, T lymphocyte counts remain low/borderline low. Conclusion: In cases of monoallelic FOXN1 variants, using whole exome sequencing and whole genome sequencing to rule out possible other significant pathogenic variants allowed us to proceed with confidence in a conservative manner, even in extreme cases consistent with newborn screen-positive early presentation of SCID.

2.
Children (Basel) ; 10(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37628361

RESUMO

The use of next-generation sequencing technologies such as genomic sequencing in newborn screening (NBS) could enable the detection of a broader range of conditions. We explored parental preferences and attitudes towards screening for conditions for which varying types of treatment exist with a cross-sectional survey completed by 100 parents of newborns who received NBS in Ontario, Canada. The survey included four vignettes illustrative of hypothetical screening targets, followed by questions assessing parental attitudes. Chi-square tests were used to compare frequency distributions of preferences. Results show that most parents supported NBS for conditions for which only supportive interventions are available, but to a significantly lesser degree than those with disease-specific treatments (99% vs. 82-87%, p ≤ 0.01). For conditions without an effective treatment, the type of supportive care and age of onset of the condition did not significantly alter parent perceptions of risks and benefits. Parents are interested in expanded NBS for conditions with only supportive interventions in childhood, despite lower levels of perceived benefit for the child and greater anticipated anxiety from screen-positive results. These preferences suggest that the expansion of NBS may require ongoing deliberation of perceived benefits and risks and enhanced approaches to education, consent, and support.

3.
HGG Adv ; 3(3): 100108, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35599849

RESUMO

Genome-wide sequencing (GWS) is a standard of care for diagnosis of suspected genetic disorders, but the proportion of patients found to have pathogenic or likely pathogenic variants ranges from less than 30% to more than 60% in reported studies. It has been suggested that the diagnostic rate can be improved by interpreting genomic variants in the context of each affected individual's full clinical picture and by regular follow-up and reinterpretation of GWS laboratory results. Trio exome sequencing was performed in 415 families and trio genome sequencing in 85 families in the CAUSES study. The variants observed were interpreted by a multidisciplinary team including laboratory geneticists, bioinformaticians, clinical geneticists, genetic counselors, pediatric subspecialists, and the referring physician, and independently by a clinical laboratory using standard American College of Medical Genetics and Genomics (ACMG) criteria. Individuals were followed for an average of 5.1 years after testing, with clinical reassessment and reinterpretation of the GWS results as necessary. The multidisciplinary team established a diagnosis of genetic disease in 43.0% of the families at the time of initial GWS interpretation, and longitudinal follow-up and reinterpretation of GWS results produced new diagnoses in 17.2% of families whose initial GWS interpretation was uninformative or uncertain. Reinterpretation also resulted in rescinding a diagnosis in four families (1.9%). Of the families studied, 33.6% had ACMG pathogenic or likely pathogenic variants related to the clinical indication. Close collaboration among clinical geneticists, genetic counselors, laboratory geneticists, bioinformaticians, and individuals' primary physicians, with ongoing follow-up, reanalysis, and reinterpretation over time, can improve the clinical value of GWS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA