Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Funct Biomater ; 14(10)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37888164

RESUMO

BACKGROUND: Graphene-based materials have great prospects for application in dentistry and medicine due to their unique properties and biocompatibility with tissues. The literature on the use of graphene oxide in orthodontic treatment was reviewed. METHODS: This systematic review followed the PRISMA protocol and was conducted by searching the following databases: PubMed, Scopus, Web of Science, and Cochrane. The following search criteria were used to review the data on the topic under study: (Graphene oxide) AND (orthodontic) ALL FIELDS. For the Scopus database, results were narrowed to titles, authors, and keywords. A basic search structure was adopted for each database. Initially, a total of 74 articles were found in the considered databases. Twelve articles met the inclusion criteria and were included in the review. RESULTS: Nine studies demonstrated the antibacterial properties of graphene oxide, which can reduce the demineralization of enamel during orthodontic treatment. Seven studies showed that it is biocompatible with oral tissues. Three studies presented that graphene oxide can reduce friction in the arch-bracket system. Two studies showed that it can improve the mechanical properties of orthodontic adhesives by reducing ARI (Adhesive Remnant Index). Three studies demonstrated that the use of graphene oxide in the appropriate concentration can also increase the SBS (shear bond strength) parameter. One research study showed that it can increase corrosion resistance. One research study suggested that it can be used to accelerate orthodontic tooth movement. CONCLUSION: The studies included in the systematic review showed that graphene oxide has numerous applications in orthodontic treatment due to its properties.

2.
Nutrients ; 15(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37571401

RESUMO

Metabolic endotoxemia (ME) is characterized by a 2-3-fold increase in blood endotoxin levels and low-grade systemic inflammation without apparent infection. ME is usually accompanied by metabolic syndrome, characterized by central obesity and hyperlipidemia. According to numerous studies, ME may lead to functional brain disorders, including cognitive decline, depression, and dementia. In the current in vitro study, we aimed to determine the direct and indirect impact of endotoxin (LPS) and palmitic acid (PA), representing saturated fatty acids, on the inflammatory and oxidative stress response in the human microglial HMC3 cells unstimulated and stimulated with IFNγ. The study's results revealed that direct HMC3 cell exposition to endotoxin and PA increased inflammatory response measured as levels of IL-6 and MCP-1 released into the medium and PGE2 levels in cell lysates. Moreover, direct HMC3 cell treatment with PA and LPS induced oxidative stress, i.e., ROS and COX-2 production and lipid peroxidation. On the contrary, an indirect effect of LPS and PA on microglial cells, assessed as the impact of macrophage metabolites, was much lower regarding the inflammatory response, although still associated with oxidative stress. Interestingly, IFNγ had a protective effect on microglial cells, reducing the production of pro-inflammatory mediators and oxidative stress in HMC3 cells treated directly and indirectly with LPS and PA.


Assuntos
Endotoxemia , Microglia , Humanos , Ácido Palmítico/farmacologia , Ácido Palmítico/metabolismo , Endotoxemia/metabolismo , Lipopolissacarídeos/farmacologia , Inflamação/metabolismo
3.
Vasc Health Risk Manag ; 19: 399-409, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426328

RESUMO

Introduction: Metabolic endotoxemia most often results from obesity and is accompanied by an increase in the permeability of the intestinal epithelial barrier, allowing co-absorption of bacterial metabolites and diet-derived fatty acids into the bloodstream. A high-fat diet (HFD) leading to obesity is a significant extrinsic factor in developing vascular atherosclerosis. In this study, we evaluated the effects of palmitic acid (PA) as a representative of long-chain saturated fatty acids (LCSFA) commonly present in HFDs, along with endotoxin (LPS; lipopolysaccharide) and uremic toxin indoxyl sulfate (IS), on human vascular endothelial cells (HUVECs). Methods: HUVECs viability was measured based on tetrazolium salt metabolism, and cell morphology was assessed with fluorescein-phalloidin staining of cells' actin cytoskeleton. The effects of simultaneous treatment of endothelial cells with PA, LPS, and IS on nitro-oxidative stress in vascular cells were evaluated quantitatively with fluorescent probes. The expression of vascular cell adhesion molecule VCAM-1, E-selectin, and occludin, an essential tight junction protein, in HUVECs treated with these metabolites was evaluated in Western blot. Results: PA, combined with LPS and IS, did not influence HUVECs viability but induced stress on actin fibers and focal adhesion complexes. Moreover, PA combined with LPS significantly enhanced reactive oxygen species (ROS) production in HUVECs but decreased nitric oxide (NO) generation. PA also considerably increased the expression of VCAM-1 and E-selectin in HUVECs treated with LPS or IS but decreased occludin expression. Conclusion: Palmitic acid enhances the toxic effect of metabolic endotoxemia on the vascular endothelium.


Assuntos
Endotoxemia , Ácido Palmítico , Humanos , Ácido Palmítico/toxicidade , Ácido Palmítico/metabolismo , Selectina E , Células Endoteliais da Veia Umbilical Humana/metabolismo , Ocludina/metabolismo , Ocludina/farmacologia , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Molécula 1 de Adesão de Célula Vascular/farmacologia , Endotoxemia/metabolismo , Obesidade , Endotélio Vascular
4.
Vaccines (Basel) ; 11(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37515014

RESUMO

The immune responses to both SARS-CoV-2 infection and vaccines are of key importance in prevention efforts. In April and May 2020, 703 study participants tested for COVID-19 by PCR tests were registered. In June and July 2020, they were examined for the presence of SARS-CoV-2 S1/S2 IgG. From October 2020 to January 2021, those among the study population with COVID-19 confirmed by PCR tests were registered, and the same group of participants was invited to be examined again for the presence of SARS-CoV-2 antibodies. In June 2020, antibodies were detected in only 88% of those who had PCR-confirmed COVID-19 in April-May 2020, which suggests that a significant proportion of persons in the Polish population do not produce antibodies after contact with SARS-CoV-2 antigens or rapidly lose them and reach levels below the lab detection limit. The levels of IgG class anti-SARS-CoV-2 antibodies were significantly lower among people who previously had COVID-19 than for those who had received COVID-19 vaccination, which confirms the high immunogenicity of the vaccines against COVID-19 in the Polish population. The study confirms that a detectable level of IgG class anti-SARS-CoV-2 antibodies cannot be considered a reliable marker of the presence and strength of COVID-19 immunity preventing individuals from acquiring SARS-CoV-2 infection.

5.
Nutrients ; 14(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35276782

RESUMO

Gut dysbiosis, alongside a high-fat diet and cigarette smoking, is considered one of the factors promoting coronary arterial disease (CAD) development. The present study aimed to research whether gut dysbiosis can increase bacterial metabolites concentration in the blood of CAD patients and what impact these metabolites can exert on endothelial cells. The gut microbiomes of 15 age-matched CAD patients and healthy controls were analyzed by 16S rRNA sequencing analysis. The in vitro impact of LPS and indoxyl sulfate at concentrations present in patients' sera on endothelial cells was investigated. 16S rRNA sequencing analysis revealed gut dysbiosis in CAD patients, further confirmed by elevated LPS and indoxyl sulfate levels in patients' sera. CAD was associated with depletion of Bacteroidetes and Alistipes. LPS and indoxyl sulfate demonstrated co-toxicity to endothelial cells inducing reactive oxygen species, E-selectin, and monocyte chemoattractant protein-1 (MCP-1) production. Moreover, both of these metabolites promoted thrombogenicity of endothelial cells confirmed by monocyte adherence. The co-toxicity of LPS and indoxyl sulfate was associated with harmful effects on endothelial cells, strongly suggesting that gut dysbiosis-associated increased intestinal permeability can initiate or promote endothelial inflammation and atherosclerosis progression.


Assuntos
Disbiose , Indicã , Disbiose/microbiologia , Células Endoteliais , Endotoxinas , Humanos , Indicã/toxicidade , RNA Ribossômico 16S/genética
6.
Medicina (Kaunas) ; 58(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35208535

RESUMO

The registration of physical signals has long been an important part of cardiological diagnostics. Current technology makes it possible to send large amounts of data to remote locations. Solutions that enable diagnosis and treatment without direct contact with patients are of enormous value, especially during the COVID-19 outbreak, as the elderly require special protection. The most important examples of telemonitoring in cardiology include the use of implanted devices such as pacemakers and defibrillators, as well as wearable sensors and data processing units. The arrythmia detection and monitoring patients with heart failure are the best studied in the clinical setting, although in many instances we still lack clear evidence of benefits of remote approaches vs. standard care. Monitoring for ischemia is less well studied. It is clear however that the economic and organizational gains of telemonitoring for healthcare systems are substantial. Both patients and healthcare professionals have expressed an enormous demand for the further development of such technologies. In addition to these subjects, in this paper we also describe the safety concerns associated with transmitting and storing potentially sensitive personal data.


Assuntos
COVID-19 , Cardiologia , Telemedicina , Idoso , Humanos , SARS-CoV-2 , Tecnologia
7.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805752

RESUMO

Graphene coating on the cobalt-chromium alloy was optimized and successfully carried out by a cold-wall chemical vapor deposition (CW-CVD) method. A uniform layer of graphene for a large area of the Co-Cr alloy (discs of 10 mm diameter) was confirmed by Raman mapping coated area and analyzing specific G and 2D bands; in particular, the intensity ratio and the number of layers were calculated. The effect of the CW-CVD process on the microstructure and the morphology of the Co-Cr surface was investigated by scanning X-ray photoelectron microscope (SPEM), atomic force microscopy (AFM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Nanoindentation and scratch tests were performed to determine mechanical properties of Co-Cr disks. The results of microbiological tests indicate that the studied Co-Cr alloys covered with a graphene layer did not show a pro-coagulant effect. The obtained results confirm the possibility of using the developed coating method in medical applications, in particular in the field of cardiovascular diseases.


Assuntos
Ligas de Cromo/química , Materiais Revestidos Biocompatíveis/química , Grafite/química , Animais , Fatores de Coagulação Sanguínea/metabolismo , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ligas de Cromo/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Eritrócitos/efeitos dos fármacos , Humanos , Teste de Materiais/métodos , Camundongos , Células NIH 3T3 , Tempo de Tromboplastina Parcial , Ativação Plaquetária/efeitos dos fármacos , Cultura Primária de Células , Propriedades de Superfície , Volatilização
8.
Materials (Basel) ; 14(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672388

RESUMO

Long-term high fat-carbohydrates diet (HF-CD) contributes to the formation of irreversible changes in the organism that lead to the emergence of civilization diseases. In this study, the impact of three-month high-fat diet on the physical properties of erythrocytes (RBCs) was studied. Furthermore, the biological activity of Cistus incanus L. extracts, plant known with high pro-health potential, in relation to normal and HF-CD RBCs, was determined. Obtained results have shown that, applied HF-CD modified shape, membrane potential and osmotic resistance of erythrocytes causing changes in membrane lipid composition and the distribution of lipids. The impact of HF-CD on physical properties of RBCs along with atherosclerotic lesions of the artery was visible, despite the lack of statistically significant changes in blood morphology and plasma lipid profile. This suggests that erythrocytes may be good markers of obesity-related diseases. The studies of biological activity of Cistus incanus L. extracts have demonstrated that they may ameliorate the effect of HF-CD on erythrocytes through the membrane-modifying and antioxidant activity.

9.
Int J Mol Sci ; 22(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567766

RESUMO

Liposomal technologies are used in order to improve the effectiveness of current therapies or to reduce their negative side effects. However, the liposome-erythrocyte interaction during the intravenous administration of liposomal drug formulations may result in changes within the red blood cells (RBCs). In this study, it was shown that phosphatidylcholine-composed liposomal formulations of Photolon, used as a drug model, significantly influences the transmembrane potential, stiffness, as well as the shape of RBCs. These changes caused decreasing the number of stomatocytes and irregular shapes proportion within the cells exposed to liposomes. Thus, the reduction of anisocytosis was observed. Therefore, some nanodrugs in phosphatidylcholine liposomal formulation may have a beneficial effect on the survival time of erythrocytes.


Assuntos
Composição de Medicamentos/métodos , Eritrócitos/citologia , Hemólise/efeitos dos fármacos , Lipossomos/química , Potenciais da Membrana , Porfirinas/farmacologia , Radiossensibilizantes/farmacologia , Animais , Forma Celular , Clorofilídeos , Eritrócitos/efeitos dos fármacos , Eritrócitos/fisiologia , Feminino , Fosfatidilcolinas/química , Porfirinas/química , Radiossensibilizantes/química , Suínos
10.
Materials (Basel) ; 15(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35009398

RESUMO

Microstructure, mechanical properties, corrosion resistance, and biocompatibility were studied for rapidly cooled 3 mm rods of Zr40Ti15Cu10Ni10Be25, Zr50Ti5Cu10Ni10Be25, and Zr40Ti15Cu10Ni5Si5Be25 (at.%) alloys, as well as for the reference 316L stainless steel and Ti-based Ti6Al4V alloy. Microstructure investigations confirm that Zr-based bulk metallic samples exhibit a glassy structure with minor fractions of crystalline phases. The nanoindentation tests carried out for all investigated composite materials allowed us to determine the mechanical parameters of individual phases observed in the samples. The instrumental hardness and elastic to total deformation energy ratio for every single phase observed in the manufactured Zr-based materials are higher than for the reference materials (316L stainless steel and Ti6Al4V alloy). A scratch tester used to determine the wear behavior of manufactured samples and reference materials revealed the effect of microstructure on mechanical parameters such as residual depth, friction force, and coefficient of friction. Electrochemical investigations in simulated body fluid performed up to 120 h show better or comparable corrosion resistance of Zr-based bulk metallic glasses in comparison with 316L stainless steel and Ti6Al4V alloy. The fibroblasts viability studies confirm the good biocompatibility of the produced materials. All obtained results show that fabricated biocompatible Zr-based materials are promising candidates for biomedical implants that require enhanced mechanical properties.

11.
Materials (Basel) ; 13(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321837

RESUMO

Current vascular stents, such as drug eluting stents (DES), have some serious drawbacks, like in stent restenosis and thrombosis. Therefore, other solutions are sought to overcome these post-implantations complications. These include the strategy of biofunctionalization of the stent surface with antibodies that facilitate adhesion of endothelial cells (ECs) or endothelial progenitor cells (EPCs). Rapid re-endothelialization of the surface minimizes the risk of possible complications. In this study, we proposed ammonium acryloyldimethyltaurate/vinylpyrrolidone co-polymer-based surface (AVC), which was mercaptosilanized in order to expose free thiol groups. The presence of free thiol groups allowed for the covalent attachment of CD133 antibodies by disulfide bridges formation between mercaptosilanized surface and cysteine of the protein molecule thiol groups. Various examinations were performed in order to validate the procedure, including attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and Fourier transform Raman spectroscopy (FT-Raman), atomic force microscopy (AFM) and scanning electron microscopy (SEM). By means of ATR-FTIR spectroscopy presence of the CD133 antibody within coating was confirmed. In vitro studies proved good biocompatibility for blood cells without induction of hemolytic response. Thus, proposed biofunctionalized CD133 antibody AVC surface has shown sufficient stability for adapting as cardiovascular implant coating and biocompatibility. According to conducted in vitro studies, the modified surface can be further tested for applications in various biological systems.

12.
Materials (Basel) ; 13(8)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340390

RESUMO

Sore, infected wounds are a major clinical issue, and there is thus an urgent need for novel biomaterials as multifunctional constituents for dressings. A set of biocomposites was prepared by solvent casting using different concentrations of carboxymethylcellulose (CMC) and exfoliated graphene oxide (Exf-GO) as a filler. Exf-GO was first obtained by the strong oxidation and exfoliation of graphite. The structural, morphological and mechanical properties of the composites (CMCx/Exf-GO) were evaluated, and the obtained composites were homogenous, transparent and brownish in color. The results confirmed that Exf-GO may be homogeneously dispersed in CMC. It was found that the composite has an inhibitory activity against the Gram-positive Staphylococcus aureus, but not against Gram-negative Pseudomonas aeruginosa. At the same time, it does not exhibit any cytotoxic effect on normal fibroblasts.

13.
Adv Clin Exp Med ; 29(12): 1497-1504, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33389841

RESUMO

Graphene is a novel carbon-based material with unique crystal nanostructure and extraordinary physical and chemical properties. Several biomedical applications of graphene and graphene-derived materials have been proposed. Its antimicrobial properties might be useful in all areas of medicine where antiseptics are required. On the other hand, the safe limits of graphene concentration for human cells have not been clearly established yet. The possibility to attach various chemically active groups to the basic lattice structure allows researchers to build graphene-based sensors for detecting biochemical molecules (and ultimately - selected cells). Sensors for physical signals, such as cardiac electrical activity, have also been proposed. The unique nanostructure of the material and the resulting physical properties (mechanical strength, elasticity and large surface area) make it a very promising material for scaffolds used in tissue regeneration. Several studies have investigated the potential advantages of a graphene coating for endovascular implants, such as stents or valves. Most of them indicate an advantage of graphene coating over other currently available solutions in terms of better hemocompatibility and facilitating endothelialization. Many of the results published so far are from in vitro studies. Promising as they might be, more data, preferably from experiments on more sophisticated animal models, must be obtained before any valid conclusions as to potential uses of graphene in medicine can be drawn.


Assuntos
Grafite , Humanos , Nanoestruturas
14.
J Biomed Mater Res B Appl Biomater ; 108(1): 213-224, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30964600

RESUMO

Rapid endothelialization of cardiovascular stents is critical to prevent major clinical complications such as restenosis. Reconstruction of the native endothelium on the stent surface can be achieved by the capture of endothelial progenitor cells (EPCs) or neighboring endothelial cells (ECs) in vivo. In this study, stainless steel cardiovascular stents were functionalized with recombinant scFv antibody fragments specific for vascular endothelial growth factor receptor-2 (VEGFR2) that is expressed on EPCs and ECs. Anti-VEGFR2 scFvs were expressed in glycosylated form in Escherichia coli and covalently attached to amine-functionalized, titania-coated steel disks and stents. ScFv-coated surfaces exhibited no detectable cytotoxicity to human ECs or erythrocytes in vitro and bound 15 times more VEGFR2-positive human umbilical vein ECs than controls after as little as 3 min. Porcine coronary arteries were successfully stented with scFv-coated stents with no adverse clinical events after 30 days. Endovascular imaging and histology revealed coverage of the anti-VEGFR2 scFv-coated stent with a cell layer after 5 days and the presence of a neointima layer with a minimum thickness of 80 µm after 30 days. Biofunctionalization of cardiovascular stents with endothelial cell-capturing antibody fragments in this manner offers promise in accelerating stent endothelialization in vivo. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:213-224, 2020.


Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Anticorpos de Cadeia Única/farmacologia , Stents , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Linhagem Celular Transformada , Materiais Revestidos Biocompatíveis/química , Humanos , Anticorpos de Cadeia Única/química , Sus scrofa
15.
Materials (Basel) ; 12(24)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31818025

RESUMO

In this study we present the porous silica-based material that can be used for in situ drug delivery, offering effective supply of active compounds regardless its water solubility. To demonstrate usability of this new material, three silica-based materials with different pore size distribution as a matrix for doping with Photolon (Ph) and Protoporphyrin IX (PPIX) photosensitizers, were prepared. These matrices can be used for coating cardiovascular stents used for treatment of the coronary artery disease and enable intravascular photodynamic therapy (PDT), which can modulate the vascular response to injury caused by stent implantation-procedure that should be thought as an alternative for drug eluting stent. The FTIR spectroscopic analysis confirmed that all studied matrices have been successfully functionalized with the target photosensitizers. Atomic force microscopy revealed that resulting photoactive matrices were very smooth, which can limit the implantation damage and reduce the risk of restenosis. No viability loss of human peripheral blood lymphocytes and no erythrocyte hemolysis upon prolonged incubations on matrices indicated good biocompatibility of designed materials. The suitability of photoactive surfaces for PDT was tested in two cell lines relevant to stent implantation: vascular endothelial cells (HUVECs) and vascular smooth muscle cells (VSMC). It was demonstrated that 2 h incubation on the silica matrices was sufficient for uptake of the encapsulated photosensitizers. Moreover, the amount of the absorbed photosensitizer was sufficient for induction of a phototoxic reaction as shown by a rise of the reactive oxygen species in photosensitized VSMC. On the other hand, limited reactive oxygen species (ROS) induction in HUVECs in our experimental set up suggests that the proposed method of PDT may be less harmful for the endothelial cells and may decrease a risk of the restenosis. Presented data clearly demonstrate that porous silica-based matrices are capable of in situ delivery of photosensitizer for PDT of VSMC.

16.
Int J Mol Sci ; 20(16)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394775

RESUMO

BACKGROUND: Liposomes serve as delivery systems for biologically active compounds. Existing technologies inefficiently encapsulate large hydrophilic macromolecules, such as PVP-conjugated chlorin e6 (Photolon). This photoactive drug has been widely tested for therapeutic applications, including photodynamic reduction of atherosclerotic plaque. METHODS: A novel formulation of Photolon was produced using "gel hydration technology". Its pharmacokinetics was tested in Sus scrofa f. domestica. Its cellular uptake, cytotoxicity, and ability to induce a phototoxic reaction were demonstrated in J774A.1, RAW264.7 macrophages, and vascular smooth muscle (T/G HA-VSMC) as well as in vascular endothelial (HUVEC) cells. RESULTS: Developed liposomes had an average diameter of 124.7 ± 0.6 nm (polydispersity index (PDI) = 0.055) and contained >80% of Photolon). The half-life of formulation in S. scrofa was 20 min with area under the curve (AUC) equal to 14.7. The formulation was noncytotoxic in vitro and was rapidly (10 min) and efficiently accumulated by macrophages, but not T/G HA-VSMC or HUVEC. The accumulated quantity of photosensitizer was sufficient for induction of phototoxicity in J774A.1, but not in T/G HA-VSMC. CONCLUSIONS: Due to the excellent physical and pharmacokinetic properties and selectivity for macrophages, the novel liposomal formulation of Photolon is a promising therapeutic candidate for use in arteriosclerosis treatment when targeting macrophages but not accompanying vascular tissue is critical for effective and safe therapy.


Assuntos
Lipossomos , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/química , Porfirinas/farmacologia , Animais , Linhagem Celular , Clorofilídeos , Composição de Medicamentos , Humanos , Lipossomos/química , Lipossomos/ultraestrutura , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Fotoquimioterapia/métodos , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Placa Aterosclerótica/terapia , Espécies Reativas de Oxigênio
17.
Colloids Surf B Biointerfaces ; 174: 587-597, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30504039

RESUMO

We report a multistep strategy of biochemical surface modifications that resulted in the synthesis of new, effective and biocompatible intravascular implants coating with immobilized anti-CD133 antibodies, that proved to be the most effective in endothelial progenitor cells capture and reduced smooth muscle cells growth. Biomolecules were immobilized on differently functionalized surfaces. The distribution, nanostructural characteristics and intramolecular interactions of anti-CD133 molecules as well as their ability to bind EPCs was evaluated. We also tempted to build a molecular model of the CD133 protein to study antigen-antibody interactions. CD133 protein is expressed in endothelial progenitor cells (EPCs). Absence of preferential interaction site on CD133, but rather a presence of a small binding area, may be the specificity of reconnaissance sequence, thus importantly increasing the probability of CD133 protein binding. After all, regarding our molecular model, we are convinced that specific, and large enough interactions between anti-CD133 coating stent surface and CD133 present on EPCs will reduce risk of restenosis by favoring the endothelial growth. Additionally, the safety study of the vivo performance of modified titania based surface was performed using small animal models. No allergological or toxical local or systemic adverse effects of the developed coatings were noted.


Assuntos
Antígeno AC133/imunologia , Anticorpos Imobilizados/imunologia , Adesão Celular , Proliferação de Células , Células Progenitoras Endoteliais/fisiologia , Miócitos de Músculo Liso/citologia , Stents , Animais , Anticorpos Imobilizados/química , Anticorpos Monoclonais/imunologia , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Reestenose Coronária/prevenção & controle , Células Progenitoras Endoteliais/citologia , Feminino , Cobaias , Humanos , Masculino , Ratos , Ratos Wistar
18.
Biomed Res Int ; 2018: 2758347, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30402466

RESUMO

Stainless steel 316L is a material commonly used in cardiovascular medicine. Despite the various methods applied in stent production, the rates of in-stent restenosis and thrombosis remain high. In this study graphene was used to coat the surface of 316L substrate for enhanced bio- and hemocompatibility of the substrate. The presence of graphene layers applied to the substrate was investigated using cutting-edge imaging technology: energy-filtered low-voltage FE-SEM approach, scanning electron microscopy (SEM), Raman spectroscopy, and atomic force microscopy (AFM). The potential of G-316L surface to influence endothelial cells phenotype and endothelial-to-mesenchymal transition (EndoMT) has been determined. Our results show that the bio- and hemocompatible properties of graphene coatings along with known radial force of 316L make G-316L a promising candidate for intracoronary implants.


Assuntos
Materiais Revestidos Biocompatíveis/química , Células Endoteliais/metabolismo , Teste de Materiais , Stents , Humanos , Propriedades de Superfície
19.
Exp Biol Med (Maywood) ; 243(10): 809-816, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29848052

RESUMO

Electromagnetic field at extremely low frequencies plays a significant role in the physiological function of human tissues and systems. It is shown that electromagnetic field inhibits production of reactive oxygen species which are involved in heart injury triggered by oxidative stress. We hypothesize that low frequency electromagnetic field protects function of cardiac cells from ischemia-reperfusion injury. Human cardiac myocytes, endothelial cells, and cardiac fibroblast underwent ischemia-reperfusion conditions in the presence or in the absence of low frequency electromagnetic field. LDH and MMP-2 activities (as markers of cell injury), and cell metabolic activity (by fluorescein diacetate staining) were measured to determine the protective role of low frequency electromagnetic field. Our data showed that short courses of low frequency electromagnetic field protect cardiac cells from cellular damage and preserve their metabolic activity during ischemia-reperfusion. This study demonstrates the possibility to use of low frequency electromagnetic field as strategy for the prevention or therapy of ischemia-reperfusion injury. Impact statement In our study, we showed that LF-EMF may be protective for heart during ischemia-reperfusion (I/R). Following is the short description of the main findings: (a) the response to the I/R injury was different for endothelial cells, fibroblasts, and cardiomyocytes; (b) I/R decreases MMP-2 activity in cardiac myocytes and fibroblasts;


Assuntos
Campos Eletromagnéticos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos da radiação , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle , Células Cultivadas , Células Endoteliais/patologia , Células Endoteliais/efeitos da radiação , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Humanos , L-Lactato Desidrogenase/análise , Metaloproteinase 2 da Matriz/análise , Modelos Biológicos
20.
Cardiol J ; 25(2): 196-202, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28714527

RESUMO

BACKGROUND: Fractional flow reserve (FFR) assesses a functional impact of the atheroma on the myocardial ischemia, but it does not take into account the morphology of the lesion. Previous optical coherence tomography (OCT), intravascular ultrasound (IVUS) and near-infrared spectroscopy (NIRS) studies presented their potential to detect vulnerable plaques, which is not possible by FFR assessment. With the following study, the intermediate lesions were assessed by FFR, OCT and combined NIRS-IVUS imaging to identify plaque vulnerability. METHODS: Thirteen intermediate lesions were analyzed simultaneously by FFR, OCT and combined NIRS-IVUS imaging. RESULTS: Two lesions were found to have FFR ≤ 0.80 (0.65 and 0.76). The other 11 lesions had FFR > 0.80 with a mean FFR 0.88 ± 0.049. Two lesions with FFR ≤ 0.80 had plaque burden (PB) > 70% and minimal lumen area (MLA) < 4 mm2, but neither of these 2 lesions were identified as OCT de-fined thin fibrous cap atheroma (TCFA), or NIRS-IVUS possible TCFA. Among the other 11 lesions with FFR > 0.80, 8 were identified as OCT-defined TCFA, 4 had PB > 70%, 6 had MLA < 4 mm2, 2 had both PB > 70% and MLA < 4 mm2, 3 lesions were identified as NIRS-IVUS possible TCFA, and 4 lesions had lipid core burden index > 400. CONCLUSIONS: The FFR-negative lesions pose traits of vulnerability as assessed simultaneously by IVUS, OCT and NIRS imaging.


Assuntos
Vasos Coronários/diagnóstico por imagem , Reserva Fracionada de Fluxo Miocárdico/fisiologia , Imagem Multimodal , Isquemia Miocárdica/diagnóstico , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Tomografia de Coerência Óptica/métodos , Ultrassonografia de Intervenção/métodos , Idoso , Vasos Coronários/fisiopatologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/fisiopatologia , Reprodutibilidade dos Testes , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA