Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Front Immunol ; 12: 581786, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717065

RESUMO

Cholesterol is essential for building and maintaining cell membranes and is critical for several steps in the replication cycle of viruses, especially for enveloped viruses. In mammalian cells virus infections lead to the accumulation of the oxysterol 25-hydroxycholesterol (25HC), an antiviral factor, which is produced from cholesterol by the cholesterol 25 hydroxylase (CH25H). Antiviral responses based on CH25H are not well studied in fish. Therefore, in the present study putative genes encoding for CH25H were identified and amplified in common carp and rainbow trout cells and an HPLC-MS method was applied for determination of oxysterol concentrations in these cells under virus infection. Our results give some evidence that the activation of CH25H could be a part of the antiviral response against a broad spectrum of viruses infecting fish, in both common carp and rainbow trout cells in vitro. Quantification of oxysterols showed that fibroblastic cells are capable of producing 25HC and its metabolite 7α,25diHC. The oxysterol 25HC showed an antiviral activity by blocking the entry of cyprinid herpesvirus 3 (CyHV-3) into KFC cells, but not spring viremia of carp virus (SVCV) or common carp paramyxovirus (Para) in the same cells, or viral haemorrhagic septicaemia virus (VHSV) and infectious pancreatic necrosis virus (IPNV) into RTG-2 cells. Despite the fact that the CH25H based antiviral response coincides with type I IFN responses, the stimulation of salmonid cells with recombinant type I IFN proteins from rainbow trout could not induce ch25h_b gene expression. This provided further evidence, that the CH25H-response is not type I IFN dependent. Interestingly, the susceptibility of CyHV-3 to 25HC is counteracted by a downregulation of the expression of the ch25h_b gene in carp fibroblasts during CyHV-3 infection. This shows a unique interplay between oxysterol based immune responses and immunomodulatory abilities of certain viruses.


Assuntos
Antivirais/imunologia , Herpesviridae/imunologia , Hidroxicolesteróis/imunologia , Rhabdoviridae/imunologia , Animais , Antivirais/metabolismo , Carpas/genética , Carpas/metabolismo , Carpas/virologia , Linhagem Celular , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/imunologia , Herpesviridae/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Hidroxicolesteróis/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Rhabdoviridae/fisiologia , Internalização do Vírus , Replicação Viral/imunologia
2.
Viruses ; 11(5)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096590

RESUMO

A novel virus from moribund European chub (Squalius cephalus) was isolated on epithelioma papulosum cyprini (EPC) cells. Transmission electron microscopic examination revealed abundant non-enveloped, hexagonal virus particles in the cytoplasm of infected EPC cells consistent with an iridovirus. Illumina MiSeq sequence data enabled the assembly and annotation of the full genome (128,216 bp encoding 108 open reading frames) of the suspected iridovirus. Maximum Likelihood phylogenetic analyses based on 25 iridovirus core genes supported the European chub iridovirus (ECIV) as being the sister species to the recently-discovered scale drop disease virus (SDDV), which together form the most basal megalocytivirus clade. Genetic analyses of the ECIV major capsid protein and ATPase genes revealed the greatest nucleotide identity to members of the genus Megalocytivirus including SDDV. These data support ECIV as a novel member within the genus Megalocytivirus. Experimental challenge studies are needed to fulfill River's postulates and determine whether ECIV induces the pathognomonic microscopic lesions (i.e., megalocytes with basophilic cytoplasmic inclusions) observed in megalocytivirus infections.


Assuntos
Cyprinidae/virologia , Doenças dos Peixes/virologia , Iridoviridae/classificação , Iridoviridae/isolamento & purificação , Iridoviridae/fisiologia , Filogenia , Animais , Linhagem Celular , Infecções por Vírus de DNA/virologia , DNA Viral/análise , Inglaterra , Iridoviridae/genética , Iridovirus/genética , Microscopia Eletrônica de Transmissão , Fases de Leitura Aberta
3.
J Fish Dis ; 42(6): 923-934, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30920010

RESUMO

Zebrafish (Danio rerio) is a laboratory model organism used in different areas of biological research including studies of immune response and host-pathogen interactions. Thanks to many biological tools available, zebrafish becomes also an important model in aquaculture research since several fish viral infection models have been developed for zebrafish. Here, we have evaluated the possible use of zebrafish to study infections with fish viruses that have not yet been tested on this model organism. In vitro studies demonstrated that chum salmon reovirus (CSV; aquareovirus A) and two alloherpesviruses cyprinid herpesvirus 1 (CyHV-1) and cyprinid herpesvirus 3 (CyHV-3) are able to replicate in zebrafish cell lines ZF4 and SJD.1. Moreover, CSV induced a clear cytopathic effect and up-regulated the expression of antiviral genes vig-1 and mxa in both cell lines. In vivo studies demonstrated that both CSV and CyHV-3 induce up-regulation of vig-1 and mxa expression in kidney and spleen of adult zebrafish after infection by i.p. injection but not in larvae after infection by immersion. CyHV-3 is eliminated quickly from fish; therefore, virus clearing process could be evaluated, and in CSV-infected fish, a prolonged confrontation of the host with the pathogen could be studied.


Assuntos
Modelos Animais de Doenças , Doenças dos Peixes/virologia , Peixe-Zebra/imunologia , Animais , Aquicultura , Carpas/virologia , Linhagem Celular , Interações Hospedeiro-Patógeno , Viroses , Peixe-Zebra/virologia
4.
Dis Aquat Organ ; 126(1): 75-81, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28930088

RESUMO

The infection of common carp and its ornamental variety, koi, with the carp edema virus (CEV) is often associated with the occurrence of a clinical disease called 'koi sleepy disease'. The disease may lead to high mortality in both koi and common carp populations. To prevent further spread of the infection and the disease, a reliable detection method for this virus is required. However, the high genetic variability of the CEV p4a gene used for PCR-based diagnostics could be a serious obstacle for successful and reliable detection of virus infection in field samples. By analysing 39 field samples from different geographical origins obtained from koi and farmed carp and from all 3 genogroups of CEV, using several recently available PCR protocols, we investigated which of the protocols would allow the detection of CEV from all known genogroups present in samples from Central European carp or koi populations. The comparison of 5 different PCR protocols showed that the PCR assays (both end-point and quantitative) developed in the Centre for Environment, Fisheries and Aquaculture Science exhibited the highest analytical inclusivity and diagnostic sensitivity. Currently, this makes them the most suitable protocols for detecting viruses from all known CEV genogroups.


Assuntos
Carpas/virologia , Doenças dos Peixes/virologia , Variação Genética , Infecções por Poxviridae/veterinária , Poxviridae/genética , Animais , Regulação Viral da Expressão Gênica/fisiologia , Filogenia , Reação em Cadeia da Polimerase , Infecções por Poxviridae/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
5.
Dis Aquat Organ ; 123(1): 19-27, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28177290

RESUMO

Cyprinid herpesvirus 1 (CyHV1) infects all scaled and color varieties of common carp Cyprinus carpio, including koi. While it is most often associated with unsightly growths known as 'carp pox,' the underlying lesion (epidermal hyperplasia) can arise from a variety of disease processes. CyHV1-induced epidermal hyperplasia may occur transiently in response to water temperature, and thus histopathology cannot be used in isolation to assess CyHV1 infection status. To address this problem, here we describe a PCR assay targeted to the putative thymidine kinase gene of CyHV1. The PCR assay generates a 141 bp amplicon and reliably detects down to 10 copies of control plasmid DNA sequence (analytic sensitivity). The PCR does not cross-detect genomic DNA from cyprinid herpesvirus 2 and 3 (analytic specificity). The CyHV1 PCR effectively detected viral DNA in koi and common carp sampled from various locations in the UK, USA, Brazil, and Japan. Viral DNA was detected in both normal appearing and grossly affected epidermal tissues from koi experiencing natural epizootics. The new CyHV1 PCR provides an additional approach to histopathology for the rapid detection of CyHV1. Analysis of the thymidine kinase gene sequences determined for 7 PCR-positive carp originating from disparate geographical regions identified 3 sequence types, with 1 type occurring in both koi and common carp.


Assuntos
Carpas , Doenças dos Peixes/virologia , Infecções por Herpesviridae/veterinária , Herpesviridae/isolamento & purificação , Reação em Cadeia da Polimerase/veterinária , Animais , Sequência de Bases , Doenças dos Peixes/diagnóstico , Infecções por Herpesviridae/diagnóstico , Infecções por Herpesviridae/virologia , Reação em Cadeia da Polimerase/métodos , RNA Viral
6.
Dis Aquat Organ ; 119(3): 245-51, 2016 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-27225208

RESUMO

Carp edema virus (CEV), the causative agent of 'koi sleepy disease' (KSD), appears to be spreading worldwide and to be responsible for losses in koi, ornamental varieties of the common carp Cyprinus carpio. Clinical signs of KSD include lethargic behaviour, swollen gills, sunken eyes and skin alterations and can easily be mistaken for other diseases, such as infection with cyprinid herpesvirus 3 (CyHV-3). To improve the future diagnosis of CEV infection and to provide a tool to better explore the relationship between viral load and clinical disease, we developed a specific quantitative PCR (qPCR) for strains of the virus known to infect koi carp. In samples from several clinically affected koi, CEV-specific DNA was present in a range from 1 to 2,046,000 copies, with a mean of 129,982 copies and a median of 45 copies per 250 ng of isolated DNA, but virus DNA could not be detected in all clinically affected koi. A comparison of the newly developed qPCR, which is based on a dual-labelled probe, to an existing end-point PCR procedure revealed higher specificity and sensitivity of the qPCR and demonstrated that the new protocol could improve CEV detection in koi. In addition to improved diagnosis, the newly developed qPCR test would be a useful research tool. For example, studies on the pathobiology of CEV could employ controlled infection experiments in which the development of clinical signs could be examined in parallel with a quantitative determination of virus load.


Assuntos
Carpas , Doenças dos Peixes/virologia , Infecções por Poxviridae/veterinária , Poxviridae/isolamento & purificação , Animais , Brânquias/virologia , Infecções por Poxviridae/virologia , Reação em Cadeia da Polimerase em Tempo Real , Carga Viral
7.
Adv Virus Res ; 93: 161-256, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26111587

RESUMO

The order Herpesvirales encompasses viruses that share structural, genetic, and biological properties. However, members of this order infect hosts ranging from molluscs to humans. It is currently divided into three phylogenetically related families. The Alloherpesviridae family contains viruses infecting fish and amphibians. There are 12 alloherpesviruses described to date, 10 of which infect fish. Over the last decade, cyprinid herpesvirus 3 (CyHV-3) infecting common and koi carp has emerged as the archetype of fish alloherpesviruses. Since its first description in the late 1990s, this virus has induced important economic losses in common and koi carp worldwide. It has also had negative environmental implications by affecting wild carp populations. These negative impacts and the importance of the host species have stimulated studies aimed at developing diagnostic and prophylactic tools. Unexpectedly, the data generated by these applied studies have stimulated interest in CyHV-3 as a model for fundamental research. This review intends to provide a complete overview of the knowledge currently available on CyHV-3.


Assuntos
Doenças dos Peixes/virologia , Infecções por Herpesviridae/veterinária , Herpesviridae/isolamento & purificação , Animais , Carpas , Herpesviridae/classificação , Herpesviridae/genética , Herpesviridae/fisiologia , Infecções por Herpesviridae/virologia , Dados de Sequência Molecular , Filogenia
8.
PLoS One ; 10(4): e0125434, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25928140

RESUMO

MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in post-transcriptional gene regulation. Some viruses encode their own miRNAs and these are increasingly being recognized as important modulators of viral and host gene expression. Cyprinid herpesvirus 3 (CyHV-3) is a highly pathogenic agent that causes acute mass mortalities in carp (Cyprinus carpio carpio) and koi (Cyprinus carpio koi) worldwide. Here, bioinformatic analyses of the CyHV-3 genome suggested the presence of non-conserved precursor miRNA (pre-miRNA) genes. Deep sequencing of small RNA fractions prepared from in vitro CyHV-3 infections led to the identification of potential miRNAs and miRNA-offset RNAs (moRNAs) derived from some bioinformatically predicted pre-miRNAs. DNA microarray hybridization analysis, Northern blotting and stem-loop RT-qPCR were then used to definitively confirm that CyHV-3 expresses two pre-miRNAs during infection in vitro. The evidence also suggested the presence of an additional four high-probability and two putative viral pre-miRNAs. MiRNAs from the two confirmed pre-miRNAs were also detected in gill tissue from CyHV-3-infected carp. We also present evidence that one confirmed miRNA can regulate the expression of a putative CyHV-3-encoded dUTPase. Candidate homologues of some CyHV-3 pre-miRNAs were identified in CyHV-1 and CyHV-2. This is the first report of miRNA and moRNA genes encoded by members of the Alloherpesviridae family, a group distantly related to the Herpesviridae family. The discovery of these novel CyHV-3 genes may help further our understanding of the biology of this economically important virus and their encoded miRNAs may have potential as biomarkers for the diagnosis of latent CyHV-3.


Assuntos
Doenças dos Peixes/virologia , Infecções por Herpesviridae/virologia , Herpesviridae/genética , MicroRNAs/genética , Animais , Carpas , Herpesviridae/patogenicidade
9.
BMC Vet Res ; 11: 114, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25976542

RESUMO

BACKGROUND: Infections with carp edema virus, a pox virus, are known from Japanese koi populations since 1974. A characteristic clinical sign associated with this infection is lethargy and therefore the disease is called "koi sleepy disease". Diseased koi also show swollen gills, enophthalmus, and skin lesions. Mortality rates up to 80 % are described. For a long period of time, disease outbreaks seemed to be restricted to Japan. However, during the last years clinical outbreaks of koi sleepy disease also occurred in the UK and in the Netherlands. CASE PRESENTATION: In spring 2014 koi from different ponds showing lethargic behavior, skin ulcers, inflammation of the anus, enophthalmus, and gill necrosis were presented to the laboratory for diagnosis. In all cases, new koi had been purchased earlier that spring from the same retailer and introduced into existing populations. Eleven koi from six ponds were examined for ectoparasites and for bacterial and viral infections (cyprinid herpesviruses in general and especially koi herpesvirus (KHV) known formally as Cyprinid herpesvirus 3 (CyHV-3); and Carp Edema Virus). In most of the cases parasites were not detected from skin and gills. Only opportunistic freshwater bacteria were isolated from skin ulcers. In cell cultures no cytopathic effect was observed, and none of the samples gave positive results in PCR tests for cyprinid herpesviruses. By analyzing gill tissues for CEV in seven out of eleven samples by a nested PCR, PCR products of 547 bp and 180 bp (by using nested primers) could be amplified. An outbreak of Koi Sleepy Disease was confirmed by sequencing of the PCR products. These results confirm the presence of CEV in German koi populations. CONCLUSION: A clinical outbreak of "koi sleepy disease" due to an infection with Carp Edema Virus was confirmed for the first time in Germany. To avoid transmission of CEV to common carp testing of CEV should become part of fish disease surveillance programs.


Assuntos
Carpas , Doenças dos Peixes/virologia , Infecções por Poxviridae/veterinária , Poxviridae/isolamento & purificação , Animais , Surtos de Doenças/veterinária , Doenças dos Peixes/epidemiologia , Alemanha/epidemiologia , Reação em Cadeia da Polimerase , Poxviridae/classificação , Infecções por Poxviridae/epidemiologia , Infecções por Poxviridae/virologia
10.
J Gen Virol ; 95(Pt 11): 2390-2401, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25081977

RESUMO

Wild freshwater eel populations have dramatically declined in recent past decades in Europe and America, partially through the impact of several factors including the wide spread of infectious diseases. The anguillid rhabdoviruses eel virus European X (EVEX) and eel virus American (EVA) potentially play a role in this decline, even if their real contribution is still unclear. In this study, we investigate the evolutionary dynamics and genetic diversity of anguiillid rhabdoviruses by analysing sequences from the glycoprotein, nucleoprotein and phosphoprotein (P) genes of 57 viral strains collected from seven countries over 40 years using maximum-likelihood and Bayesian approaches. Phylogenetic trees from the three genes are congruent and allow two monophyletic groups, European and American, to be clearly distinguished. Results of nucleotide substitution rates per site per year indicate that the P gene is expected to evolve most rapidly. The nucleotide diversity observed is low (2-3 %) for the three genes, with a significantly higher variability within the P gene, which encodes multiple proteins from a single genomic RNA sequence, particularly a small C protein. This putative C protein is a potential molecular marker suitable for characterization of distinct genotypes within anguillid rhabdoviruses. This study provides, to our knowledge, the first molecular characterization of EVA, brings new insights to the evolutionary dynamics of two genotypes of Anguillid rhabdovirus, and is a baseline for further investigations on the tracking of its spread.


Assuntos
Anguilla/virologia , Genes Virais , Rhabdoviridae/genética , Animais , Evolução Molecular , Variação Genética , Filogenia , RNA Viral/genética , Rhabdoviridae/classificação , Rhabdoviridae/isolamento & purificação , Proteínas Virais/genética
12.
Dis Aquat Organ ; 107(2): 113-20, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24334353

RESUMO

Cyprinid herpesvirus 3 (CyHV-3) or koi herpesvirus (KHV) is a devastating virus of carp. Using generic primers for the DNA polymerase and the major capsid protein genes of cyprinid herpesviruses, nucleotide sequences divergent from previously described CyHV-3 were obtained. At least 3 novel groups of putative CyHV-3-like viruses were identified, sharing 95 to 98% nucleotide identity with CyHV-3 strains. Carp carrying the CyHV-3 variants did not show clinical signs consistent with CyHV-3 infection and originated from locations with no actual CyHV-3 outbreaks. These strains might represent low- or non-pathogenic variants of CyHV-3.


Assuntos
Cyprinidae , Doenças dos Peixes/virologia , Infecções por Herpesviridae/veterinária , Herpesviridae/genética , Animais , Herpesviridae/classificação , Infecções por Herpesviridae/virologia , Filogenia
13.
J Gen Virol ; 86(Pt 6): 1659-1667, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15914843

RESUMO

The sequences of four complete genes were analysed in order to determine the relatedness of koi herpesvirus (KHV) to three fish viruses in the family Herpesviridae: carp pox herpesvirus (Cyprinid herpesvirus 1, CyHV-1), haematopoietic necrosis herpesvirus of goldfish (Cyprinid herpesvirus 2, CyHV-2) and channel catfish virus (Ictalurid herpesvirus 1, IcHV-1). The genes were predicted to encode a helicase, an intercapsomeric triplex protein, the DNA polymerase and the major capsid protein. The results showed that KHV is related closely to CyHV-1 and CyHV-2, and that the three cyprinid viruses are related, albeit more distantly, to IcHV-1. Twelve KHV isolates from four diverse geographical areas yielded identical sequences for a region of the DNA polymerase gene. These findings, with previously published morphological and biological data, indicate that KHV should join the group of related lower-vertebrate viruses in the family Herpesviridae under the formal designation Cyprinid herpesvirus 3 (CyHV-3).


Assuntos
Doenças dos Peixes/virologia , Genoma Viral , Infecções por Herpesviridae/veterinária , Herpesviridae/genética , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/genética , Carpas/virologia , Peixes-Gato/virologia , DNA Helicases , DNA Polimerase III , DNA Polimerase Dirigida por DNA/genética , Carpa Dourada/virologia , Herpesviridae/classificação , Infecções por Herpesviridae/virologia , Herpesvirus Ranídeo 1 , Dados de Sequência Molecular , Alinhamento de Sequência , Especificidade da Espécie , Proteínas do Core Viral/genética
14.
J Gen Virol ; 84(Pt 10): 2661-2667, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-13679599

RESUMO

Koi herpesvirus (KHV) has been associated with devastating losses of common carp (Cyprinus carpio carpio) and koi (Cyprinus carpio koi) in North America, Europe, Israel and Asia. A comparison of virion polypeptides and genomic restriction fragments of seven geographically diverse isolates of KHV indicated that with one exception they represented a homogeneous group. A principal environmental factor influencing the onset and severity of disease is water temperature. Optimal growth of KHV in a koi fin cell line occurred at temperatures from 15-25 degrees C. There was no growth or minimal growth at 4, 10, 30 or 37 degrees C. Experimental infections of koi with KHV at a water temperature of 23 degrees C resulted in a cumulative mortality of 95.2 %. Disease progressed rapidly but with lower mortality (89.4-95.2 %) at 28 degrees C. Mortality (85.0 %) also occurred at 18 degrees C but not at 13 degrees C. Shifting virus-exposed fish from 13-23 degrees C resulted in the rapid onset of mortality.


Assuntos
Carpas , Doenças dos Peixes/mortalidade , Variação Genética , Infecções por Herpesviridae/veterinária , Herpesviridae/genética , Animais , Linhagem Celular , DNA Viral/análise , Doenças dos Peixes/virologia , Herpesviridae/isolamento & purificação , Herpesviridae/patogenicidade , Herpesviridae/fisiologia , Infecções por Herpesviridae/mortalidade , Infecções por Herpesviridae/virologia , Polimorfismo de Fragmento de Restrição , Temperatura , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA