Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Int J Biol Macromol ; 224: 1460-1470, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328267

RESUMO

The effective control of Aedes mosquitoes using traditional control agents is increasingly challenging due to the presence of insecticide resistance in many populations of key mosquito vectors. An alternative strategy to insecticides is the use of toxic sugar baits, however it is limited due to short-term efficacy. Alginate-Gelatin hydrogel beads (AGHBs) may be an effective alternative by providing longer periods of mosquito attraction and control, especially of key vectors of dengue viruses such as Aedes aegypti and Aedes albopictus. Sodium alginate (ALG) and gelatin (GLN) are natural polymers, which can be a potential candidate to develop the AGHBs baits due to their biodegradability and environmental safety. Here we provide an assessment of the preparation of AGHBs optimized by varying the concentrations of ALG, GLN, and its cross-linking time (TIME). Fourier transform infrared spectroscopy (FTIR) analysis results in the determination of liquid bait loaded in the AGHBs. The evaluation of AGHBs' effectiveness as the potential baiting tool based on the mortality rate of mosquitoes after the bait consumption. The 100 % percent mortality of Aedes mosquitoes was obtained within 72 h of bait consumption. The field evaluation also justifies the applicability of AGHBs for outdoor applications. We conclude that the AGHBs are applicable as a baiting tool in carrying liquid bait in achieving mosquito mortality.


Assuntos
Aedes , Inseticidas , Animais , Gelatina , Alginatos , Hidrogéis , Controle de Mosquitos/métodos , Larva
2.
Vector Borne Zoonotic Dis ; 22(11): 529-534, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36354964

RESUMO

Japanese encephalitis virus (JEV) continues to cause significant numbers of human infections and fatalities despite the availability of efficacious vaccines. It is regarded as an emerging mosquito-borne pathogen with the potential of introduction into many countries. In 2022, JEV was detected in Australia on a hitherto unprecedented scale, with local transmission by indigenous mosquitoes to amplifying swine hosts and to humans. In this study, we review this recent disease activity, propose possible routes of virus movement, ecological drivers of activity, and consider possible future transmission scenarios. Measures to enhance current surveillance systems and potential strategies for health authorities to minimize future risks are discussed.


Assuntos
Culex , Culicidae , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Doenças dos Suínos , Animais , Humanos , Austrália/epidemiologia , Encefalite Japonesa/epidemiologia , Encefalite Japonesa/prevenção & controle , Saúde Pública , Suínos , Doenças dos Suínos/epidemiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-35627874

RESUMO

Citizen science mosquito surveillance has been growing in recent years due to both increasing concern about mosquito-borne disease and the increasing popularity of citizen science projects globally. Health authorities are recognising the potential importance of citizen science to expanding or enhancing traditional surveillance programs. Different programs have shown success in engaging communities to monitor species of medical importance through low-cost methods. The Mozzie Monitors project was established on iNaturalist-an open citizen science platform that allows participants to upload photos (i.e., observers) and assist identification (i.e., identifiers). This article describes the likelihood of citizen scientists submitting photos of mosquitoes, assesses user submission behaviour, and evaluates public health utility from these citizen science-derived data. From October 2018 to July 2021, the Mozzie Monitors project on iNaturalist received 2118 observations of 57 different species of mosquitoes across Australia. The number of observers in the system increased over time with more than 500 observers and 180 identifiers being active in the project since its establishment. Data showed species bias with large-bodied and colourful mosquitoes being over-represented. Analyses also indicate regional differentiation of mosquito fauna per state, seasonality of activity, and ecological information about mosquitoes. The iNaturalist citizen science platform also allows connectedness, facilitated communication and collaboration between overall users and expert entomologists, of value to medical entomology and mosquito management.


Assuntos
Ciência do Cidadão , Culicidae , Animais , Austrália , Entomologia , Humanos
4.
Sci Total Environ ; 817: 152689, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34974015

RESUMO

The terrestrial, freshwater and marine realms all provide essential ecosystem services in urban environments. However, the services provided by each realm are often considered independently, which ignores the synergies between them and risks underestimating the benefits derived collectively. Greater research collaboration across these realms, and an integrated approach to management decisions can help to support urban developments and restoration projects in maintaining or enhancing ecosystem services. The aim of this paper is to highlight the synergies and trade-offs among ecosystem services provided by each realm and to offer suggestions on how to improve current practice. We use case studies to illustrate the flow of services across realms. In our call to better integrate research and management across realms, we present a framework that provides a 6-step process for conducting collaborative research and management with an Australian perspective. Our framework considers unifying language, sharing, and understanding of desired outcomes, conducting cost-benefit analyses to minimise trade-offs, using multiple modes of communication for stakeholders, and applying research outcomes to inform regulation. It can be applied to improve collaboration among researchers, managers and planners from all realms, leading to strategic allocation of resources, increased protection of urban natural resources and improved environmental regulation with broad public support.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Austrália , Água Doce
5.
Trop Med Infect Dis ; 6(1)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671150

RESUMO

Exotic mosquitoes, especially container-inhabiting species such as Aedes aegypti and Aedes albopictus, pose a risk to Australia as they bring with them potentially significant pest and public health concerns. Notwithstanding the threat to public health and wellbeing, significant economic costs associated with the burden of mosquito control would fall to local authorities. Detection of these mosquitoes at airports and seaports has highlighted pathways of introduction but surveillance programs outside these first ports of entry are not routinely conducted in the majority of Australian cities. To assist local authorities to better prepare response plans for exotic mosquito incursions, an investigation was undertaken to determine the extent of habitats suitable for container-inhabiting mosquitoes in over 300 residential properties adjacent to the Port of Newcastle, Newcastle, NSW. More than 1500 water-holding containers were recorded, most commonly pot plant saucers, roof gutters, and water-holding plants (e.g., bromeliads). There were significantly more containers identified for properties classified as untidy but there was no evidence visible that property characteristics could be used to prioritise property surveys in a strategic eradication response. The results demonstrate that there is potential for local establishment of exotic mosquitoes and that considerable effort would be required to adequately survey these environments for the purpose of surveillance and eradication programs.

6.
Vector Borne Zoonotic Dis ; 21(3): 208-215, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33325801

RESUMO

Insect-specific flaviviruses (ISFs) have been isolated from a range of mosquito species from different parts of the world. These viruses replicate efficiently in mosquitoes but do not appear to replicate in vertebrates. There is increasing evidence that ISFs persist in nature through vertical transmission, and that they interfere with the replication and transmission of pathogenic flaviviruses in the mosquito host. A novel ISF species, Parramatta River virus (PaRV), was previously shown to occur at high rates in Aedes (Ae.) vigilax mosquitoes collected from Sydney, Australia. We investigated whether vertical transmission was the mechanism of viral persistence in Ae. vigilax populations and whether PaRV affected replication of the pathogenic flaviviruses, West Nile virus (WNV), and dengue virus type 3 (DENV-3) in cultured mosquito cells. Progeny reared from eggs obtained from field-collected infected females had infection rates as high as 142 and 85 per 1000 for females and males, respectively. In vitro experiments showed that replication of both WNV and DENV-3 was significantly suppressed in Aedes albopictus (C6/36) cells persistently infected with PaRV. Our studies with PaRV support the findings of previous investigations that ISFs persist in nature through vertical transmission and that ISFs can suppress the replication of pathogenic flaviviruses in coinfected mosquito cells.


Assuntos
Aedes , Flavivirus , Vírus do Nilo Ocidental , Animais , Feminino , Insetos , Masculino , Replicação Viral
7.
Public Health Res Pract ; 30(4)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33294903

RESUMO

Mosquitoes and mosquito-borne disease are a normal part of the Australian summer but the 2019-2020 summer was anything but normal. Above average temperatures and below average rainfall resulted in drought across many parts of New South Wales (NSW), Australia, which then contributed to catastrophic bushfires. However, by late summer, above average rainfall resulted in a dramatic increase in mosquito abundance. While the coronavirus disease 2019 (COVID-19) pandemic unfolded, NSW experienced increased activity of mosquito-borne Ross River virus. All these extreme events created many challenges for managing the pest and the public health risks associated with mosquitoes, from maintenance of mosquito monitoring and control programs through to unique challenges of communicating mosquito bite prevention advice to local communities. There are important lessons to be learned in situations where extreme weather events may influence the risk of mosquito-borne disease through driving changes in the abundance and diversity of mosquito populations, while also influencing the abundance and distribution of native wildlife that represents important local reservoirs of arboviruses. Similarly, supporting the maintenance of mosquito monitoring and management programs while local authorities face competing priorities due to extreme natural disasters and/or public health events is critical.


Assuntos
COVID-19/epidemiologia , Mosquitos Vetores/virologia , Doenças Transmitidas por Vetores/epidemiologia , Incêndios Florestais/estatística & dados numéricos , Infecções por Alphavirus/epidemiologia , Animais , Desastres , Humanos , Controle de Mosquitos , New South Wales/epidemiologia , Pandemias , Saúde Pública , Ross River virus , SARS-CoV-2 , Estações do Ano , Doenças Transmitidas por Vetores/virologia , Tempo (Meteorologia)
8.
Parasit Vectors ; 13(1): 484, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967711

RESUMO

Changes to Australia's climate and land-use patterns could result in expanded spatial and temporal distributions of endemic mosquito vectors including Aedes and Culex species that transmit medically important arboviruses. Climate and land-use changes greatly influence the suitability of habitats for mosquitoes and their behaviors such as mating, feeding and oviposition. Changes in these behaviors in turn determine future species-specific mosquito diversity, distribution and abundance. In this review, we discuss climate and land-use change factors that influence shifts in mosquito distribution ranges. We also discuss the predictive and epidemiological merits of incorporating these factors into a novel integrated statistical (SSDM) and mechanistic species distribution modelling (MSDM) framework. One potentially significant merit of integrated modelling is an improvement in the future surveillance and control of medically relevant endemic mosquito vectors such as Aedes vigilax and Culex annulirostris, implicated in the transmission of many arboviruses such as Ross River virus and Barmah Forest virus, and exotic mosquito vectors such as Aedes aegypti and Aedes albopictus. We conducted a focused literature search to explore the merits of integrating SSDMs and MSDMs with biotic and environmental variables to better predict the future range of endemic mosquito vectors. We show that an integrated framework utilising both SSDMs and MSDMs can improve future mosquito-vector species distribution projections in Australia. We recommend consideration of climate and environmental change projections in the process of developing land-use plans as this directly impacts mosquito-vector distribution and larvae abundance. We also urge laboratory, field-based researchers and modellers to combine these modelling approaches. Having many different variations of integrated (SDM) modelling frameworks could help to enhance the management of endemic mosquitoes in Australia. Enhanced mosquito management measures could in turn lead to lower arbovirus spread and disease notification rates.


Assuntos
Biodiversidade , Culicidae/fisiologia , Mosquitos Vetores/fisiologia , Distribuição Animal , Animais , Austrália , Mudança Climática , Culicidae/classificação , Controle de Mosquitos , Mosquitos Vetores/classificação
9.
Sci Total Environ ; 704: 135349, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31837870

RESUMO

Mosquito surveillance remains a cornerstone of pest and disease control operations globally but is strongly limited in scale by resources. The use of citizen science to upscale scientific data collection is commonplace, and mosquito surveillance programs have begun to make use of citizen scientists in several countries, particularly for exotic species detection. Here we report on a proof of concept trial in southern Australia for a citizen science mosquito surveillance program characterised by fixed point trapping with BG GAT devices and remote mosquito identification through emailed images, which we term 'e-entomology'. In a study with 126 participants, we detected mosquito seasonality with peak abundance in mid-summer (1.78 mosquitoes per trap per day), weather correlations (positive correlation with maximum temperature, r = 0.41) and a diversity of species (15 of 22 known species in the region) in a metropolitan setting. Whilst we demonstrated that the costs of a citizen science program is only about 20% of a comparable professional surveillance program, the mosquito community sampled by citizen scientists was biased towards container-inhabiting species, particularly Aedes notoscriptus. This is the first time fixed-point mosquito trapping has been combined with citizen science e-entomology to deliver comprehensive surveillance of urban mosquitoes.


Assuntos
Ciência do Cidadão , Monitoramento Ambiental/métodos , Controle de Mosquitos , Smartphone , Aedes , Animais , Coleta de Dados , Entomologia , Humanos , Austrália do Sul
10.
J Med Entomol ; 56(5): 1290-1295, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31095691

RESUMO

Aedes vigilax (Skuse) is a pest and vector species associated with coastal wetlands and the abundance of this mosquito has been identified as contributing to increased risk of mosquito-borne disease outbreaks. As urban development continues to encroach on these coastal wetlands, pest and public health impacts are becoming of increasing concern and in the absence of broadscale mosquito control. Urban planners are looking to buffer zones and other land use planning options to minimize contact between mosquitoes and humans but gaps in the understanding of dispersal ranges of mosquitoes hamper the adoption of these strategies. A mark-release-recapture experiment was conducted to measure the dispersal of this mosquito from an urban estuarine wetland in Sydney, Australia. An estimated total of over 150,000 wild caught female mosquitoes were marked with fluorescent dust and then released. A network of 38 traps was then operated for 5 d within an area of 28 km2. A total of 280 marked mosquitoes was recaptured, representing less than 1% of the estimate 250,000 marked mosquitoes released. Marked mosquitoes were recaptured up to 3 km from the release point, providing an insight into the dispersal range of these mosquitoes. The mean distance traveled by marked mosquitoes was 0.83 km, a result reflecting the greater proportion of marked mosquitoes recaptured near release point. The findings of this study indicate that effective buffer zones between estuarine wetlands and high-density urban developments would be an impractical approach to minimizing pest and public health impacts associated with this mosquito.


Assuntos
Distribuição Animal , Ochlerotatus/fisiologia , Aedes/fisiologia , Animais , Cidades , Estuários , Feminino , New South Wales , Áreas Alagadas
11.
J Med Entomol ; 56(4): 1165-1169, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-30916306

RESUMO

Constructed wetlands are popular tools for managing threatened flora and fauna in urban settings, but there are concerns that these habitats may increase mosquito populations and mosquito-related public health risks. Understanding the interactions occurring between mosquitoes of public health concern and co-occurring organisms is critical to informing management of these habitats to mitigate potential health risks and balance the multiple values of urban wetlands. This study examined how oviposition behavior of Culex annulirostris Skuse, the most important pest mosquito species associated with freshwater wetland habitats in Australia, is influenced by the presence of Gambusia holbrooki Girard, a widespread invasive fish. Water was collected from urban wetlands that are intensively managed to reduce G. holbrooki populations to assist conservation of locally threatened frogs, and adjacent unmanaged wetlands where G. holbrooki was abundant. Laboratory experiments were conducted to examine the oviposition response by Cx. annulirostris to water samples from these two habitats. Experiments were conducted on two occasions, once in February following draining and refilling of the urban wetlands, and repeated following a substantial rainfall event in March. The results clearly demonstrate that ovipositing mosquitoes were able to detect and avoid water derived from habitats containing fish, even in the absence of the fish themselves. Understanding how invasive species affect the behavior and spatial distribution of pest species such as Cx. annulirostris will enable future wetland design and management to maximize benefits of urban wetlands and minimize potential public health risks.


Assuntos
Comportamento Animal , Culex , Ciprinodontiformes , Espécies Introduzidas , Oviposição , Animais , Feminino
12.
Int J Parasitol ; 49(5): 321-336, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30858050

RESUMO

The cat flea (Ctenocephalides felis) is the most common parasite of domestic cats and dogs worldwide. Due to the morphological ambiguity of C. felis and a lack of - particularly largescale - phylogenetic data, we do not know whether global C. felis populations are morphologically and genetically conserved, or whether human-mediated migration of domestic cats and dogs has resulted in homogenous global populations. To determine the ancestral origin of the species and to understand the level of global pervasion of the cat flea and related taxa, our study aimed to document the distribution and phylogenetic relationships of Ctenocephalides fleas found on cats and dogs worldwide. We investigated the potential drivers behind the establishment of regional cat flea populations using a global collection of fleas from cats and dogs across six continents. We morphologically and molecularly evaluated six out of the 14 known taxa comprising genus Ctenocephalides, including the four original C. felis subspecies (Ctenocephalides felis felis, Ctenocephalides felis strongylus, Ctenocephalides felis orientis and Ctenocephalides felis damarensis), the cosmopolitan species Ctenocephalides canis and the African species Ctenocephalides connatus. We confirm the ubiquity of the cat flea, representing 85% of all fleas collected (4357/5123). Using a multigene approach combining two mitochondrial (cox1 and cox2) and two nuclear (Histone H3 and EF-1α) gene markers, as well as a cox1 survey of 516 fleas across 56 countries, we demonstrate out-of-Africa origins for the genus Ctenocephalides and high levels of genetic diversity within C. felis. We define four bioclimatically limited C. felis clusters (Temperate, Tropical I, Tropical II and African) using maximum entropy modelling. This study defines the global distribution, African origin and phylogenetic relationships of global Ctenocephalides fleas, whilst resolving the taxonomy of the C. felis subspecies and related taxa. We show that humans have inadvertently precipitated the expansion of C. felis throughout the world, promoting diverse population structure and bioclimatic plasticity. By demonstrating the link between the global cat flea communities and their affinity for specific bioclimatic niches, we reveal the drivers behind the establishment and success of the cat flea as a global parasite.


Assuntos
Doenças do Gato/parasitologia , Ctenocephalides/classificação , Doenças do Cão/parasitologia , Infestações por Pulgas/parasitologia , Infestações por Pulgas/veterinária , África , Animais , Gatos , Ctenocephalides/genética , Ctenocephalides/crescimento & desenvolvimento , Cães , Feminino , Marcadores Genéticos , Humanos , Masculino , Filogenia
13.
Parasitology ; 146(4): 462-471, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30269696

RESUMO

Australian mosquito species significantly impact human health through nuisance biting and the transmission of endemic and exotic pathogens. Surveillance programmes designed to provide an early warning of mosquito-borne disease risk require reliable identification of mosquitoes. This study aimed to investigate the viability of Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) as a rapid and inexpensive approach to the identification of Australian mosquitoes and was validated using a three-step taxonomic approach. A total of 300 mosquitoes representing 21 species were collected from south-eastern New South Wales and morphologically identified. The legs from the mosquitoes were removed and subjected to MALDI-TOF MS analysis. Fifty-eight mosquitoes were sequenced at the cytochrome c oxidase subunit I (cox1) gene region and genetic relationships were analysed. We create the first MALDI-TOF MS spectra database of Australian mosquito species including 19 species. We clearly demonstrate the accuracy of MALDI-TOF MS for identification of Australian mosquitoes. It is especially useful for assessing gaps in the effectiveness of DNA barcoding by differentiating closely related taxa. Indeed, cox1 DNA barcoding was not able to differentiate members of the Culex pipiens group, Cx. quinquefasciatus and Cx. pipiens molestus, but these specimens were correctly identified using MALDI-TOF MS.


Assuntos
Culicidae/genética , Complexo IV da Cadeia de Transporte de Elétrons/análise , Proteínas de Insetos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Austrália , Culicidae/classificação
14.
Trop Med Infect Dis ; 3(3)2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30274473

RESUMO

Due to conservation and rehabilitation efforts, mangrove forests represent some of the largest environmental niches in Malaysia. However, there is little information on the potential risks posed by mosquitoes that are directly and indirectly associated with mangrove forests. To study the potential health risk to humans active within and in close vicinity of mangrove forests, this research focused on the day biting habits of mosquitoes in mangrove forests of Kedah, Malaysia. The bare leg catch (BLC) method was used to collect adult mosquitoes during a 12-h period from 7:30 a.m. to 7:30 p.m. in both disturbed and less disturbed areas of mangroves. In total, 795 adult mosquitoes from 5 genera and 8 species were collected, and over 65% of the total mosquitoes were collected from the less disturbed area. The predominant species from the less disturbed area was Verrallina butleri; in the disturbed area the dominant species was Culex sitiens. The peak biting hour differed for each species, with Aedes albopictus and Cx. sitiens recorded as having a bimodal biting activity peak during dawn and dusk. For Ve. butleri an erratic pattern of biting activity was recorded in the less disturbed area but it peaked during the early daytime for both collection points. Overall, the distinct pattern of day biting habits of mosquitoes within mangroves peaked during dawn and dusk for the less disturbed area but was irregular for the disturbed area throughout the day. The presence of vectors of pathogens such as Ae. albopictus for both areas raises the need for authorities to consider management of mosquitoes in mangrove forests.

16.
J Gen Virol ; 99(4): 596-609, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29533743

RESUMO

Liao ning virus (LNV) was first isolated in 1996 from mosquitoes in China, and has been shown to replicate in selected mammalian cell lines and to cause lethal haemorrhagic disease in experimentally infected mice. The first detection of LNV in Australia was by deep sequencing of mosquito homogenates. We subsequently isolated LNV from mosquitoes of four genera (Culex, Anopheles, Mansonia and Aedes) in New South Wales, Northern Territory, Queensland and Western Australia; the earliest of these Australian isolates were obtained from mosquitoes collected in 1988, predating the first Chinese isolates. Genetic analysis revealed that the Australian LNV isolates formed two new genotypes: one including isolates from eastern and northern Australia, and the second comprising isolates from the south-western corner of the continent. In contrast to findings reported for the Chinese LNV isolates, the Australian LNV isolates did not replicate in vertebrate cells in vitro or in vivo, or produce signs of disease in wild-type or immunodeficient mice. A panel of human and animal sera collected from regions where the virus was found in high prevalence also showed no evidence of LNV-specific antibodies. Furthermore, high rates of virus detection in progeny reared from infected adult female mosquitoes, coupled with visualization of the virus within the ovarian follicles by immunohistochemistry, suggest that LNV is transmitted transovarially. Thus, despite relatively minor genomic differences between Chinese and Australian LNV strains, the latter display a characteristic insect-specific phenotype.


Assuntos
Aedes/virologia , Anopheles/virologia , Culex/virologia , Mosquitos Vetores/virologia , Infecções por Reoviridae/virologia , Reoviridae/isolamento & purificação , Aedes/fisiologia , Animais , Anopheles/fisiologia , Austrália , China , Culex/fisiologia , Feminino , Genoma Viral , Genótipo , Especificidade de Hospedeiro , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mosquitos Vetores/fisiologia , Fenótipo , Filogenia , Reoviridae/classificação , Reoviridae/genética , Reoviridae/fisiologia , Infecções por Reoviridae/transmissão , Replicação Viral
17.
J Med Entomol ; 55(2): 477-480, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29228245

RESUMO

Wyeomyia (Wyeomyia) mitchellii (Theobald) (Diptera: Culicidae) was recovered for the first time on Guam, United States of America, in 2017. Larval specimens were collected from water-filled axils of bromeliads during a larval survey carried out in a residential neighborhood of the Chalan Pago/Ordot area. Native to the New World, Wy. mitchellii has likely made its way to the Pacific Islands through the possibly illegal import of ornamental bromeliads. While this mosquito does not represent a significant threat to public health, this finding highlights the vulnerability of the Pacific Islands to the introduction of exotic species, including mosquito species that may increase public health risks.


Assuntos
Distribuição Animal , Culicidae/fisiologia , Animais , Culicidae/crescimento & desenvolvimento , Guam , Espécies Introduzidas , Larva/crescimento & desenvolvimento , Larva/fisiologia
18.
Arch Virol ; 162(11): 3529-3534, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28785815

RESUMO

Three new viruses classifiable within the Totivirus and Orbivirus genera were detected from Anopheles mosquito species collected in Eastern Australia. The viruses could not be isolated in C6/36 mosquito cell cultures but were shown to replicate in their mosquito hosts by small RNA analysis. The viruses grouped phylogenetically with other viruses recently detected in insects. These discoveries contribute to a better understanding of commensal viruses in Australian mosquitoes and the evolution of these viruses.


Assuntos
Anopheles/virologia , Orbivirus/isolamento & purificação , Totivirus/isolamento & purificação , Distribuição Animal , Animais , Austrália , Linhagem Celular , Orbivirus/genética , Filogenia , Totivirus/genética
19.
J Vector Ecol ; 42(1): 105-112, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28504428

RESUMO

The fundamental approach to the biological control of Aedes albopictus requires the mass rearing of mosquitoes and the release of highly competitive adults in the field. As the fitness of adults is highly dependent on the development of immatures, we aimed to identify the minimum feeding regime required to produce viable and competitive adults by evaluating three response parameters: development duration, immature mortality, and adult wing length. Our study suggests at least 0.60 mg/larva/day of larval diet composed of dog food, dried beef liver, yeast, and milk powder in a weight ratio of 2:1:1:1 is required to maximize adult fitness. With standardized protocols in mass rearing, intensive studies can be readily conducted on mosquito colonies to facilitate comparisons across laboratories. This study also evaluated the differences in response of laboratory and field strains under different feeding regimes. We found that strain alone did not exert substantial effects on all response parameters. However, the field strain exhibited significantly lower immature mortality than the laboratory strain under the minimum feeding regime. Females and males of the laboratory strain had longer wing lengths under nutritional constraint due to the higher mortality that resulted in reduced interactions with the remaining larvae. Meanwhile, the field strain exhibited heterogeneous duration of immature development compared with the laboratory strain. The disparities demonstrated by the two strains in this study suggest the effect of inbreeding surfaced after a long term of laboratory colonization. Despite the trade-offs resulting from laboratory colonization, the competitiveness of the laboratory strain of Ae. albopictus is comparable to the field strain, provided the larvae are fed optimally.


Assuntos
Aedes/crescimento & desenvolvimento , Comportamento Alimentar , Endogamia , Larva/crescimento & desenvolvimento , Animais , Feminino , Masculino
20.
PLoS One ; 12(3): e0173105, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28253306

RESUMO

There are many gaps to be filled in our understanding of mosquito-borne viruses, their relationships with vectors and reservoir hosts, and the environmental drivers of seasonal activity. Stratford virus (STRV) belongs to the genus Flavivirus and has been isolated from mosquitoes and infected humans in Australia but little is known of its vector and reservoir host associations. A total of 43 isolates of STRV from mosquitoes collected in New South Wales between 1995 and 2013 was examined to determine the genetic diversity between virus isolates and their relationship with mosquito species. The virus was isolated from six mosquito species; Aedes aculeatus, Aedes alternans, Aedes notoscriptus, Aedes procax, Aedes vigilax, and Anopheles annulipes. While there were distinct differences in temporal and spatial activity of STRV, with peaks of activity in 2006, 2010 and 2013, a sequence homology of 95.9%-98.4% was found between isolates and the 1961 STRV prototype with 96.2%-100% identified among isolates. Temporal differences but no apparent nucleotide divergence by mosquito species or geographic location was evident. The result suggests the virus is geographically widespread in NSW (albeit only from coastal regions) and increased local STRV activity is likely to be driven by reservoir host factors and local environmental conditions influencing vector abundance. While STRV may not currently be associated with major outbreaks of human disease, with the potential for urbanisation and climate change to increase mosquito-borne disease risks, and the possibility of genomic changes which could produce pathogenic strains, understanding the drivers of STRV activity may assist the development of strategic response to public health risks posed by zoonotic flaviviruses in Australia.


Assuntos
Aedes/virologia , Mosquitos Vetores/virologia , Estações do Ano , Animais , Humanos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA