Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur Urol Oncol ; 5(4): 412-419, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35450835

RESUMO

BACKGROUND: Bacteria play a suspected role in the development of several cancer types, and associations between the presence of particular bacteria and prostate cancer have been reported. OBJECTIVE: To provide improved characterisation of the prostate and urine microbiome and to investigate the prognostic potential of the bacteria present. DESIGN, SETTING, AND PARTICIPANTS: Microbiome profiles were interrogated in sample collections of patient urine (sediment microscopy: n = 318, 16S ribosomal amplicon sequencing: n = 46; and extracellular vesicle RNA-seq: n = 40) and cancer tissue (n = 204). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Microbiomes were assessed using anaerobic culture, population-level 16S analysis, RNA-seq, and whole genome DNA sequencing. RESULTS AND LIMITATIONS: We demonstrate an association between the presence of bacteria in urine sediments and higher D'Amico risk prostate cancer (discovery, n = 215 patients, p < 0.001; validation, n = 103, p < 0.001, χ2 test for trend). Characterisation of the bacterial community led to the (1) identification of four novel bacteria (Porphyromonas sp. nov., Varibaculum sp. nov., Peptoniphilus sp. nov., and Fenollaria sp. nov.) that were frequently found in patient urine, and (2) definition of a patient subgroup associated with metastasis development (p = 0.015, log-rank test). The presence of five specific anaerobic genera, which includes three of the novel isolates, was associated with cancer risk group, in urine sediment (p = 0.045, log-rank test), urine extracellular vesicles (p = 0.039), and cancer tissue (p = 0.035), with a meta-analysis hazard ratio for disease progression of 2.60 (95% confidence interval: 1.39-4.85; p = 0.003; Cox regression). A limitation is that functional links to cancer development are not yet established. CONCLUSIONS: This study characterises prostate and urine microbiomes, and indicates that specific anaerobic bacteria genera have prognostic potential. PATIENT SUMMARY: In this study, we investigated the presence of bacteria in patient urine and the prostate. We identified four novel bacteria and suggest a potential prognostic utility for the microbiome in prostate cancer.


Assuntos
Microbiota , Neoplasias da Próstata , Bactérias/genética , Humanos , Masculino , Microbiota/genética , Próstata/patologia , Neoplasias da Próstata/patologia , RNA Ribossômico 16S/genética
2.
Cancers (Basel) ; 14(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35454901

RESUMO

There is a clinical need to improve assessment of biopsy-naïve patients for the presence of clinically significant prostate cancer (PCa). In this study, we investigated whether the robust integration of expression data from urinary extracellular vesicle RNA (EV-RNA) with urine proteomic metabolites can accurately predict PCa biopsy outcome. Urine samples collected within the Movember GAP1 Urine Biomarker study (n = 192) were analysed by both mass spectrometry-based urine-proteomics and NanoString gene-expression analysis (167 gene-probes). Cross-validated LASSO penalised regression and Random Forests identified a combination of clinical and urinary biomarkers for predictive modelling of significant disease (Gleason Score (Gs) ≥ 3 + 4). Four predictive models were developed: 'MassSpec' (CE-MS proteomics), 'EV-RNA', and 'SoC' (standard of care) clinical data models, alongside a fully integrated omics-model, deemed 'ExoSpec'. ExoSpec (incorporating four gene transcripts, six peptides, and two clinical variables) is the best model for predicting Gs ≥ 3 + 4 at initial biopsy (AUC = 0.83, 95% CI: 0.77−0.88) and is superior to a standard of care (SoC) model utilising clinical data alone (AUC = 0.71, p < 0.001, 1000 resamples). As the ExoSpec Risk Score increases, the likelihood of higher-grade PCa on biopsy is significantly greater (OR = 2.8, 95% CI: 2.1−3.7). The decision curve analyses reveals that ExoSpec provides a net benefit over SoC and could reduce unnecessary biopsies by 30%.

3.
Prostate ; 80(7): 547-558, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32153047

RESUMO

BACKGROUND: Prostate cancer exhibits severe clinical heterogeneity and there is a critical need for clinically implementable tools able to precisely and noninvasively identify patients that can either be safely removed from treatment pathways or those requiring further follow up. Our objectives were to develop a multivariable risk prediction model through the integration of clinical, urine-derived cell-free messenger RNA (cf-RNA) and urine cell DNA methylation data capable of noninvasively detecting significant prostate cancer in biopsy naïve patients. METHODS: Post-digital rectal examination urine samples previously analyzed separately for both cellular methylation and cf-RNA expression within the Movember GAP1 urine biomarker cohort were selected for a fully integrated analysis (n = 207). A robust feature selection framework, based on bootstrap resampling and permutation, was utilized to find the optimal combination of clinical and urinary markers in a random forest model, deemed ExoMeth. Out-of-bag predictions from ExoMeth were used for diagnostic evaluation in men with a clinical suspicion of prostate cancer (PSA ≥ 4 ng/mL, adverse digital rectal examination, age, or lower urinary tract symptoms). RESULTS: As ExoMeth risk score (range, 0-1) increased, the likelihood of high-grade disease being detected on biopsy was significantly greater (odds ratio = 2.04 per 0.1 ExoMeth increase, 95% confidence interval [CI]: 1.78-2.35). On an initial TRUS biopsy, ExoMeth accurately predicted the presence of Gleason score ≥3 + 4, area under the receiver-operator characteristic curve (AUC) = 0.89 (95% CI: 0.84-0.93) and was additionally capable of detecting any cancer on biopsy, AUC = 0.91 (95% CI: 0.87-0.95). Application of ExoMeth provided a net benefit over current standards of care and has the potential to reduce unnecessary biopsies by 66% when a risk threshold of 0.25 is accepted. CONCLUSION: Integration of urinary biomarkers across multiple assay methods has greater diagnostic ability than either method in isolation, providing superior predictive ability of biopsy outcomes. ExoMeth represents a more holistic view of urinary biomarkers and has the potential to result in substantial changes to how patients suspected of harboring prostate cancer are diagnosed.


Assuntos
Ácidos Nucleicos Livres/urina , Metilação de DNA , DNA/urina , Modelos Genéticos , Neoplasias da Próstata/genética , Neoplasias da Próstata/urina , Adulto , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/urina , Ácidos Nucleicos Livres/genética , Estudos de Coortes , DNA/genética , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Gradação de Tumores , Neoplasias da Próstata/patologia , Medição de Risco
4.
Biotechniques ; 68(2): 65-71, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31779479

RESUMO

Urine from patients with prostate cancer (PCa) contains gene transcripts that have been used for PCa diagnosis and prognosis. Historically, patient urine samples have been collected after a digital rectal examination of the prostate, which was thought necessary to boost the levels of prostatic secretions in the urine. We herein describe methodology that allows urine to be collected by patients at home and then posted to a laboratory for analysis. RNA yields and quality were comparable to those for post digital rectal examination urine, and there was improved sensitivity for the detection of TMPRSS2:ERG transcripts by RT-PCR. The At-Home collection protocol has opened up the potential to perform large-scale PCa studies without the inconvenience, cost, discomfort and expense of patients having to visit the clinic.


Assuntos
Programas de Rastreamento/métodos , Neoplasias da Próstata/diagnóstico , RNA/urina , Coleta de Urina/métodos , Humanos , Masculino , Neoplasias da Próstata/urina
5.
BJU Int ; 124(4): 609-620, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31106513

RESUMO

OBJECTIVES: To develop a risk classifier using urine-derived extracellular vesicle (EV)-RNA capable of providing diagnostic information on disease status prior to biopsy, and prognostic information for men on active surveillance (AS). PATIENTS AND METHODS: Post-digital rectal examination urine-derived EV-RNA expression profiles (n = 535, multiple centres) were interrogated with a curated NanoString panel. A LASSO-based continuation ratio model was built to generate four prostate urine risk (PUR) signatures for predicting the probability of normal tissue (PUR-1), D'Amico low-risk (PUR-2), intermediate-risk (PUR-3), and high-risk (PUR-4) prostate cancer. This model was applied to a test cohort (n = 177) for diagnostic evaluation, and to an AS sub-cohort (n = 87) for prognostic evaluation. RESULTS: Each PUR signature was significantly associated with its corresponding clinical category (P < 0.001). PUR-4 status predicted the presence of clinically significant intermediate- or high-risk disease (area under the curve = 0.77, 95% confidence interval [CI] 0.70-0.84). Application of PUR provided a net benefit over current clinical practice. In an AS sub-cohort (n = 87), groups defined by PUR status and proportion of PUR-4 had a significant association with time to progression (interquartile range hazard ratio [HR] 2.86, 95% CI 1.83-4.47; P < 0.001). PUR-4, when used continuously, dichotomized patient groups with differential progression rates of 10% and 60% 5 years after urine collection (HR 8.23, 95% CI 3.26-20.81; P < 0.001). CONCLUSION: Urine-derived EV-RNA can provide diagnostic information on aggressive prostate cancer prior to biopsy, and prognostic information for men on AS. PUR represents a new and versatile biomarker that could result in substantial alterations to current treatment of patients with prostate cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA