Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 21(37): 3751031-3751036, 2009 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-19789720

RESUMO

Crystallization phenomena of fluorochlorozirconate glasses were investigated by means of differential scanning calorimetry and inelastic neutron scattering. The precipitation of barium chloride nanoparticles from the glass matrix upon heat treatment was found to be suppressed when re-melting the glass with a reducing agent but not if the agent was present in the initial synthesis. Addition of small amounts of oxide to the predominantly fluoride melt was found to maintain the presence of nanoparticles but not to induce the predicted phase transition of the barium chloride nanoparticles from hexagonal to orthorhombic structure. Inelastic neutron scattering performed on an 'as-made' glass and a heat-treated glass showed an increase in 'hardness', consistent with a more ordered structure.

2.
Science ; 274(5290): 1173-6, 1996 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-8895462

RESUMO

Rutherford backscattering spectroscopy (RBS) and microscopy demonstrate that the approximately 1400°C oxidation of levitated droplets of a natural Fe2+-bearing aluminosilicate (basalt) melt occurs by chemical diffusion of Fe2+ and Ca2+ to the free surface of the droplet; internal oxidation of the melt results from the required counterflux of electron holes. Diffusion of an oxygen species is not required. Oxidation causes the droplets to go subsolidus; magnetite (Fe3O4) forms at the oxidation-solidification front with a morphology suggestive of a Liesegang-band nucleation process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA