Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Clin Transl Neurol ; 11(8): 2138-2152, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38924699

RESUMO

OBJECTIVE: To define tauopathy-associated changes in the human gray and white matter proteome. METHOD: We applied tandem mass tagged labeling and mass spectrometry, consensus, and ratio weighted gene correlation network analysis (WGCNA) to gray and white matter sampled from postmortem human dorsolateral prefrontal cortex. The sampled tissues included control as well as Alzheimer's disease, corticobasal degeneration, progressive supranuclear palsy, frontotemporal degeneration with tau pathology, and chronic traumatic encephalopathy. RESULTS: Only eight proteins were unique to gray matter while six were unique to white matter. Comparison of the gray and white matter proteome revealed an enrichment of microglial proteins in the white matter. Consensus WGCNA sorted over 6700 protein isoforms into 46 consensus modules across the gray and white matter proteomic networks. Consensus network modules demonstrated unique and shared disease-associated microglial and endothelial protein changes. Ratio WGCNA sorted over 6500 protein ratios (white:gray) into 33 modules. Modules associated with mitochondrial proteins and processes demonstrated higher white:gray ratios in diseased tissues relative to control, driven by mitochondrial protein downregulation in gray and upregulation in white. INTERPRETATION: The dataset is a valuable resource for understanding proteomic changes in human tauopathy gray and white matter. The identification of unique and shared disease-associated changes across gray and white matter emphasizes the utility of examining both tissue types. Future studies of microglial, endothelial, and mitochondrial changes in white matter may provide novel insights into tauopathy-associated changes in human brain.


Assuntos
Substância Cinzenta , Proteômica , Tauopatias , Substância Branca , Humanos , Tauopatias/patologia , Tauopatias/metabolismo , Substância Branca/patologia , Substância Branca/metabolismo , Substância Cinzenta/metabolismo , Substância Cinzenta/patologia , Idoso , Feminino , Masculino , Paralisia Supranuclear Progressiva/patologia , Paralisia Supranuclear Progressiva/metabolismo , Pessoa de Meia-Idade , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Proteoma/metabolismo
2.
Neurobiol Aging ; 112: 55-73, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35051675

RESUMO

To understand how glia may be altered in frontotemporal degeneration with tau pathology (FTD-tau), we used a NanoString glial profiling panel to measure 770 transcripts related to glial biology in human control (n = 8), Alzheimer's disease (AD) (n = 8), and FTD-tau (n = 8) dorsolateral prefrontal cortex. Compared to control, 43 genes were upregulated and 86 genes were downregulated in the FTD-tau samples. Only 3 genes were upregulated and 2 were downregulated in AD. Pathway analysis revealed many astrocyte-, microglia-, and oligodendrocyte-related pathway scores increased in FTD-tau, while neuron-related pathway scores decreased. We compared these results to a previously published proteomic dataset containing many of the same samples and found that the targeted panel approach obtained measurements for genes whose proteins were not measured in the proteomics. Our results point to the utility of multiomic approaches and marked dysregulation of glia in FTD-tau.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Tauopatias , Doença de Alzheimer/patologia , Astrócitos/metabolismo , Encéfalo/metabolismo , Demência Frontotemporal/patologia , Humanos , Neuroglia/patologia , Proteômica , Tauopatias/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
3.
Mol Neurodegener ; 16(1): 40, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172091

RESUMO

BACKGROUND: There is an association between repetitive head injury (RHI) and a pathologic diagnosis of chronic traumatic encephalopathy (CTE) characterized by the aggregation of proteins including tau. The underlying molecular events that cause these abnormal protein accumulations remain unclear. Here, we hypothesized that identifying the human brain proteome from serial CTE stages (CTE I-IV) would provide critical new insights into CTE pathogenesis. Brain samples from frontotemporal lobar degeneration due to microtubule associated protein tau (FTLD-MAPT) mutations were also included as a distinct tauopathy phenotype for comparison. METHODS: Isobaric tandem mass tagged labeling and mass spectrometry (TMT-MS) followed by integrated differential and co-expression analysis (i.e., weighted gene co-expression network analysis (WGCNA)) was used to define modules of highly correlated proteins associated with clinical and pathological phenotypes in control (n = 23), CTE (n = 43), and FTLD-MAPT (n = 12) post-mortem cortical tissues. We also compared these findings to network analysis of AD brain. RESULTS: We identified over 6000 unique proteins across all four CTE stages which sorted into 28 WGCNA modules. Consistent with Alzheimer's disease, specific modules demonstrated reduced neuronal protein levels, suggesting a neurodegeneration phenotype, while other modules were increased, including proteins associated with inflammation and glial cell proliferation. Notably, unique CTE-specific modules demonstrated prominent enrichment of immunoglobulins, including IGHM and IGLL5, and extracellular matrix (ECM) proteins as well as progressive protein changes with increasing CTE pathologic stage. Finally, aggregate cell subtype (i.e., neurons, microglia, astrocytes) protein abundance levels in CTE cases were similar in expression to AD, but at intermediate levels between controls and the more exaggerated phenotype of FTLD-MAPT, especially in astrocytes. CONCLUSIONS: Overall, we identified thousands of protein changes in CTE postmortem brain and demonstrated that CTE has a pattern of neurodegeneration in neuronal-synaptic and inflammation modules similar to AD. We also identified unique CTE progressive changes, including the enrichment of immunoglobulins and ECM proteins even in early CTE stages. Early and sustained changes in astrocyte modules were also observed. Overall, the prominent overlap with FTLD-MAPT cases confirmed that CTE is on the tauopathy continuum and identified CTE stage specific molecular phenotypes that provide novel insights into disease pathogenesis.


Assuntos
Encefalopatia Traumática Crônica/metabolismo , Encefalopatia Traumática Crônica/patologia , Proteômica/métodos , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Fenótipo
4.
Mol Neurodegener ; 15(1): 28, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381088

RESUMO

BACKGROUND: Proteomic characterization of microglia provides the most proximate assessment of functionally relevant molecular mechanisms of neuroinflammation. However, microglial proteomics studies have been limited by low cellular yield and contamination by non-microglial proteins using existing enrichment strategies. METHODS: We coupled magnetic-activated cell sorting (MACS) and fluorescence activated cell sorting (FACS) of microglia with tandem mass tag-mass spectrometry (TMT-MS) to obtain a highly-pure microglial proteome and identified a core set of highly-abundant microglial proteins in adult mouse brain. We interrogated existing human proteomic data for Alzheimer's disease (AD) relevance of highly-abundant microglial proteins and performed immuno-histochemical and in-vitro validation studies. RESULTS: Quantitative multiplexed proteomics by TMT-MS of CD11b + MACS-enriched (N = 5 mice) and FACS-isolated (N = 5 mice), from adult wild-type mice, identified 1791 proteins. A total of 203 proteins were highly abundant in both datasets, representing a core-set of highly abundant microglial proteins. In addition, we found 953 differentially enriched proteins comparing MACS and FACS-based approaches, indicating significant differences between both strategies. The FACS-isolated microglia proteome was enriched with cytosolic, endoplasmic reticulum, and ribosomal proteins involved in protein metabolism and immune system functions, as well as an abundance of canonical microglial proteins. Conversely, the MACS-enriched microglia proteome was enriched with mitochondrial and synaptic proteins and higher abundance of neuronal, oligodendrocytic and astrocytic proteins. From the 203 consensus microglial proteins with high abundance in both datasets, we confirmed microglial expression of moesin (Msn) in wild-type and 5xFAD mouse brains as well as in human AD brains. Msn expression is nearly exclusively found in microglia that surround Aß plaques in 5xFAD brains. In in-vitro primary microglial studies, Msn silencing by siRNA decreased Aß phagocytosis and increased lipopolysaccharide-induced production of the pro-inflammatory cytokine, tumor necrosis factor (TNF). In network analysis of human brain proteomic data, Msn was a hub protein of an inflammatory co-expression module positively associated with AD neuropathological features and cognitive dysfunction. CONCLUSIONS: Using FACS coupled with TMT-MS as the method of choice for microglial proteomics, we define a core set of highly-abundant adult microglial proteins. Among these, we validate Msn as highly-abundant in plaque-associated microglia with relevance to human AD.


Assuntos
Doença de Alzheimer/metabolismo , Citometria de Fluxo , Macrófagos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , Animais , Encéfalo/metabolismo , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Citometria de Fluxo/métodos , Humanos , Camundongos , Proteômica/métodos
5.
Mol Neurodegener ; 13(1): 34, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29954413

RESUMO

BACKGROUND: Microglia are innate immune cells of the brain that perform phagocytic and inflammatory functions in disease conditions. Transcriptomic studies of acutely-isolated microglia have provided novel insights into their molecular and functional diversity in homeostatic and neurodegenerative disease states. State-of-the-art mass spectrometry methods can comprehensively characterize proteomic alterations in microglia in neurodegenerative disorders, potentially providing novel functionally relevant molecular insights that are not provided by transcriptomics. However, comprehensive proteomic profiling of adult primary microglia in neurodegenerative disease conditions has not been performed. METHODS: We performed quantitative mass spectrometry based proteomic analyses of purified CD11b+ acutely-isolated microglia from adult (6 mo) mice in normal, acute neuroinflammatory (LPS-treatment) and chronic neurodegenerative states (5xFAD model of Alzheimer's disease [AD]). Differential expression analyses were performed to characterize specific microglial proteomic changes in 5xFAD mice and identify overlap with LPS-induced pro-inflammatory changes. Our results were also contrasted with existing proteomic data from wild-type mouse microglia and from existing microglial transcriptomic data from wild-type and 5xFAD mice. Neuropathological validation studies of select proteins were performed in human AD and 5xFAD brains. RESULTS: Of 4133 proteins identified, 187 microglial proteins were differentially expressed in the 5xFAD mouse model of AD pathology, including proteins with previously known (Apoe, Clu and Htra1) as well as previously unreported relevance to AD biology (Cotl1 and Hexb). Proteins upregulated in 5xFAD microglia shared significant overlap with pro-inflammatory changes observed in LPS-treated mice. Several proteins increased in human AD brain were also upregulated by 5xFAD microglia (Aß peptide, Apoe, Htra1, Cotl1 and Clu). Cotl1 was identified as a novel microglia-specific marker with increased expression and strong association with AD neuropathology. Apoe protein was also detected within plaque-associated microglia in which Apoe and Aß were highly co-localized, suggesting a role for Apoe in phagocytic clearance of Aß. CONCLUSIONS: We report a comprehensive proteomic study of adult mouse microglia derived from acute neuroinflammation and AD models, representing a valuable resource to the neuroscience research community. We highlight shared and unique microglial proteomic changes in acute neuroinflammation aging and AD mouse models and identify novel roles for microglial proteins in human neurodegeneration.


Assuntos
Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Microglia/imunologia , Microglia/metabolismo , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Proteômica
6.
J Neuropathol Exp Neurol ; 77(1): 40-49, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29145658

RESUMO

Quantitative proteomics of postmortem human brain can identify dysfunctional proteins that contribute to neurodegenerative disorders like Alzheimer disease (AD) and frontotemporal dementia. Similar studies in chronic traumatic encephalopathy (CTE) are limited, therefore we hypothesized that proteomic sequencing of CTE frontal cortex brain homogenates from varying CTE pathologic stages may provide important new insights into this disorder. Quantitative proteomics of control, CTE and AD brains was performed to characterize differentially expressed proteins, and we identified over 4000 proteins in CTE brains, including significant enrichment of the microtubule associated protein tau. We also found enrichment and pathologic aggregation of RNA processing factors as seen previously in AD, supporting the previously recognized overlap between AD and CTE. In addition to these similarities, we identified CTE-specific enrichment of proteins which increase with increasing severity of CTE pathology. NADPH dehydrogenase quinone 1 (NQO1) was one of the proteins which showed significant enrichment in CTE and also correlated with increasing CTE stage. NQO1 demonstrated neuropathologic correlation with hyperphosphorylated tau in glial cells, mainly astrocytes. These results demonstrate that quantitative proteomic analysis of CTE postmortem human brain can identify disease relevant findings and novel cellular pathways involved in CTE pathogenesis.


Assuntos
Encéfalo/metabolismo , Encefalopatia Traumática Crônica/metabolismo , Proteoma , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/patologia , Encefalopatia Traumática Crônica/patologia , Humanos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fosforilação , Proteômica , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA