Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 340: 139887, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37604336

RESUMO

New energetic formulations containing insensitive high explosives (IHE), such as 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazole-5-one (NTO), and nitroguanidine (NQ) are being developed to provide safer munitions. The addition of IHE to munitions formulations results in complex wastewaters from explosives manufacturing, load and pour operations and demilitarization activities. New technologies are required to treat those wastewaters. The core objective of this research effort was to develop and optimize a dual anaerobic-aerobic membrane bioreactor (MBR) system for treatment of wastewater containing variable mixtures of traditional energetics, IHE, and anions. The combined system proved highly effective for treatment of traditional explosives (TNT, RDX, HMX), IHE (DNAN, NTO, NQ) and anions commonly used as military oxidants (ClO4-, NO3-). The anaerobic MBR, which was operated for more than 500 d, was observed to completely degrade mg L-1 concentrations of TNT, DNAN, ClO4- and NO3- under all operational conditions, including at the lowest hydraulic residence time (HRT) tested (2.2 d). The combined system generally resulted in complete treatment of mg L-1 concentrations of RDX and HMX to <20 µg L-1, with most of the degradation occurring in the anaerobic MBR and polishing in the aerobic system. No common daughter products of DNAN, TNT, RDX, or HMX were detected in the effluent. NTO was completely transformed in the anaerobic MBR, but residual 3-amino-1,2,4-triazole-5-one (ATO) was detected in system effluent. The ATO rapidly decomposed when bleach solution was added to the final effluent. NQ was initially recalcitrant in the system, but microbial populations eventually developed that could degrade >90% of the ∼10 mg L-1 NQ entering the anaerobic MBR, with the remainder degraded to <50 µg L-1 in the aerobic system. The dual MBR system proved to be capable of complete degradation of a wide mixture of munitions constituents and was resilient to changing influent composition.


Assuntos
Substâncias Explosivas , Anaerobiose , Águas Residuárias , Membranas , Reatores Biológicos
2.
Water Res ; 126: 361-371, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28972939

RESUMO

The ex situ treatment of N-nitrosodimethylamine (NDMA) and N-nitrodimethylamine (NTDMA) in groundwater was evaluated in a field-scale fluidized bed bioreactor (FBR). Both of these compounds, which originally entered groundwater at the test site from the use of liquid rocket propellant, are suspected human carcinogens. The objective of this research was to examine the application of a novel field-scale propane-fed fluidized bed bioreactor as an alternative to ultraviolet irradiation (UV) for treating NDMA and NTDMA to low part-per-trillion (ng/L) concentrations. Previous laboratory studies have shown that the bacterium Rhodococcus ruber ENV425 can biodegrade NDMA and NTDMA during growth on propane as a primary substrate and that the strain can effectively reduce NDMA concentrations in propane-fed bench-scale bioreactors of different design. R. ruber ENV425 was used as a seed culture for the FBR, which operated at a fluidization flow of ∼19 L-per-min (LPM) and received propane, oxygen, and inorganic nutrients in the feed. The reactor effectively treated ∼1 µg/L of influent NDMA to effluent concentrations of less than 10 ng/L at a hydraulic residence time (HRT) of only 10 min. At a 20 min HRT, the FBR reduced NDMA to <4.2 ng/L in the effluent, which was the discharge limit at the test site where the study was conducted. Similarly, NTDMA was consistently treated in the FBR from ∼0.5 µg/L to <10 ng/L at an HRT of 10 min or longer. Based on these removal rates, the average NDMA and NTDMA elimination capacities achieved were 2.1 mg NDMA treated/m3 of expanded bed/hr of operation and 1.1 mg NTDMA treated/m3 of expanded bed/hr of operation, respectively. The FBR system was highly resilient to upsets including power outages. Treatment of NDMA, but not NTDMA, was marginally affected when trace co-contaminants including trichloroethene (TCE) and trichlorofluoromethane (Freon 11) were initially added to feed groundwater, but performance recovered over a few weeks in the continued presence of these compounds. Strain ENV425 appeared to be replaced by native propanotrophs over time based on qPCR analysis, but contaminant treatment was not diminished. The results suggest that a FBR can be a viable alternative to UV treatment for removing NDMA from groundwater.


Assuntos
Reatores Biológicos , Dimetilaminas/metabolismo , Dimetilnitrosamina/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Água Subterrânea , Oxigênio/metabolismo , Propano/metabolismo , Tricloroetileno/metabolismo
3.
Water Res ; 47(2): 811-20, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23206498

RESUMO

N-nitrosodimethylamine (NDMA) is a suspected human carcinogen that has traditionally been treated in water using ultraviolet irradiation (UV). The objective of this research was to examine the application of a laboratory-scale fluidized bed reactor (FBR) as an alternative technology for treating NDMA to part-per-trillion (ng/L) concentrations in groundwater. Previous studies have shown that the bacterium Rhodococcus ruber ENV425 is capable of cometabolizing NDMA during growth on propane as a primary substrate in batch culture (Fournier et al., 2009) and in a bench-scale membrane bioreactor (Hatzinger et al., 2011) to low ng/L concentrations. R. ruber ENV425 was inoculated into the FBR during this study. With a hydraulic residence time (HRT) of 20 min, the FBR was found to be an effective means to treat 10-20 µg/L of NDMA to effluent concentrations less than 100 ng/L. When the HRT was increased to 30 min and oxygen and propane addition rates were optimized, the FBR system demonstrated treatment of the NDMA to effluent concentrations of less than 10 ng/L. Short-term shutdowns and the presence of trichloroethene (TCE) at 6 µg/L as a co-contaminant had minimal effect on the treatment of NDMA in the FBR. The data suggest that the FBR technology can be a viable alternative to UV for removing NDMA from groundwater.


Assuntos
Biodegradação Ambiental , Reatores Biológicos/microbiologia , Carcinógenos Ambientais/metabolismo , Dimetilnitrosamina/metabolismo , Água Subterrânea/química , Rhodococcus/metabolismo , Poluentes Químicos da Água/metabolismo , Adsorção , Carcinógenos Ambientais/análise , Carcinógenos Ambientais/química , Dimetilnitrosamina/análise , Dimetilnitrosamina/química , Água Potável/análise , Água Potável/normas , Estudos de Viabilidade , Água Subterrânea/microbiologia , Resíduos Industriais , Cinética , Limnologia/métodos , New Mexico , Oxigênio/metabolismo , Propano/metabolismo , Rhodococcus/crescimento & desenvolvimento , Voo Espacial , Tricloroetileno/química , Estados Unidos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Purificação da Água/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA