Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
ACS Chem Neurosci ; 15(10): 2058-2069, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38652895

RESUMO

Amyloid plaques composed of fibrils of misfolded Aß peptides are pathological hallmarks of Alzheimer's disease (AD). Aß fibrils are polymorphic in their tertiary and quaternary molecular structures. This structural polymorphism may carry different pathologic potencies and can putatively contribute to clinical phenotypes of AD. Therefore, mapping of structural polymorphism of Aß fibrils and structural evolution over time is valuable to understanding disease mechanisms. Here, we investigated how Aß fibril structures in situ differ in Aß plaque of different mouse models expressing familial mutations in the AßPP gene. We imaged frozen brains with a combination of conformation-sensitive luminescent conjugated oligothiophene (LCO) ligands and Aß-specific antibodies. LCO fluorescence mapping revealed that mouse models APP23, APPPS1, and AppNL-F have different fibril structures within Aß-amyloid plaques depending on the AßPP-processing genotype. Co-staining with Aß-specific antibodies showed that individual plaques from APP23 mice expressing AßPP Swedish mutation have two distinct fibril polymorph regions of core and corona. The plaque core is predominantly composed of compact Aß40 fibrils, and the corona region is dominated by diffusely packed Aß40 fibrils. Conversely, the AßPP knock-in mouse AppNL-F, expressing the AßPP Iberian mutation along with Swedish mutation has tiny, cored plaques consisting mainly of compact Aß42 fibrils, vastly different from APP23 even at elevated age up to 21 months. Age-dependent polymorph rearrangement of plaque cores observed for APP23 and APPPS1 mice >12 months, appears strongly promoted by Aß40 and was hence minuscule in AppNL-F. These structural studies of amyloid plaques in situ can map disease-relevant fibril polymorph distributions to guide the design of diagnostic and therapeutic molecules.


Assuntos
Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Placa Amiloide , Animais , Humanos , Camundongos , Envelhecimento/metabolismo , Envelhecimento/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Camundongos Transgênicos , Mutação , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Conformação Proteica
2.
Acta Neuropathol Commun ; 8(1): 133, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787922

RESUMO

Alpha-synucleinopathies are a group of progressive neurodegenerative disorders, characterized by intracellular deposits of aggregated α-synuclein (αS). The clinical heterogeneity of these diseases is thought to be attributed to conformers (or strains) of αS but the contribution of inclusions in various cell types is unclear. The aim of the present work was to study αS conformers among different transgenic (TG) mouse models of α-synucleinopathies. To this end, four different TG mouse models were studied (Prnp-h[A53T]αS; Thy1-h[A53T]αS; Thy1-h[A30P]αS; Thy1-mαS) that overexpress human or murine αS and differed in their age-of-symptom onset and subsequent disease progression. Postmortem analysis of end-stage brains revealed robust neuronal αS pathology as evidenced by accumulation of αS serine 129 (p-αS) phosphorylation in the brainstem of all four TG mouse lines. Overall appearance of the pathology was similar and only modest differences were observed among additionally affected brain regions. To study αS conformers in these mice, we used pentameric formyl thiophene acetic acid (pFTAA), a fluorescent dye with amyloid conformation-dependent spectral properties. Unexpectedly, besides the neuronal αS pathology, we also found abundant pFTAA-positive inclusions in microglia of all four TG mouse lines. These microglial inclusions were also positive for Thioflavin S and showed immunoreactivity with antibodies recognizing the N-terminus of αS, but were largely p-αS-negative. In all four lines, spectral pFTAA analysis revealed conformational differences between microglia and neuronal inclusions but not among the different mouse models. Concomitant with neuronal lesions, microglial inclusions were already present at presymptomatic stages and could also be induced by seeded αS aggregation. Although nature and significance of microglial inclusions for human α-synucleinopathies remain to be clarified, the previously overlooked abundance of microglial inclusions in TG mouse models of α-synucleinopathy bears importance for mechanistic and preclinical-translational studies.


Assuntos
Microglia/patologia , Neurônios/patologia , Sinucleinopatias/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Corpos de Inclusão/patologia , Camundongos , Camundongos Transgênicos , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Conformação Proteica , Sinucleinopatias/genética , alfa-Sinucleína/química
3.
Curr Alzheimer Res ; 16(8): 723-731, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31418660

RESUMO

BACKGROUND: Curcumin has been of interest in the field of Alzheimer's disease. Early studies on transgenic mice showed promising results in the reduction of amyloid plaques.However, curcumin is very poorly soluble in aqueous solutions and not easily accessible to coupling as it contains only phenolic groups as potential coupling sites. For these reasons only few imaging studies using curcumin bound as an ester were performed and curcumin is mainly used as nutritional supplement. METHODS: In the present study we produced an aminoethyl ether derivative of curcumin using a nucleophilic substitution reaction. This is a small modification and should not impact the properties of curcumin while introducing an easily accessible reactive amino group. This novel compound could be used to couple curcumin to other molecules using the standard methods of peptide synthesis. We studied the aminoethyl-curcumin compound and a tripeptide carrying this aminoethyl-curcumin and the fluorescent dye fluorescein (FITC-curcumin) in vitro on cell culture using confocal laser scanning microscopy and flow cytometry. Then these two substances were tested ex vivo on brain sections prepared from transgenic mice depicting Alzheimer-like ß-amyloid plaques. RESULTS: In the in vitro CLSM microscopy and flow cytometry experiments we found dot-like unspecific uptake and only slight cytotoxicity correlating with this uptake. As these measurements were optimized for the use of fluorescein as dye we found that the curcumin at 488nm fluorescence excitation was not strong enough to use it as a fluorescence marker in these applications. In the ex vivo sections CLSM experiments both the aminoethyl-curcumin and the FITC-curcumin peptide bound specifically to ß- amyloid plaques. CONCLUSION: In conclusion we successfully produced a novel curcumin derivative which could easily be coupled to other imaging or therapeutic molecules as a sensor for amyloid plaques.


Assuntos
Doença de Alzheimer/patologia , Curcumina/análogos & derivados , Fluoresceína , Corantes Fluorescentes/síntese química , Animais , Encéfalo/patologia , Linhagem Celular , Citometria de Fluxo , Fluoresceína/química , Corantes Fluorescentes/química , Humanos , Camundongos Transgênicos , Microscopia Confocal , Placa Amiloide/patologia
4.
Ann Neurol ; 86(4): 561-571, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31359452

RESUMO

OBJECTIVE: Clinical trials targeting ß-amyloid peptides (Aß) for Alzheimer disease (AD) failed for arguable reasons that include selecting the wrong stages of AD pathophysiology or Aß being the wrong target. Targeting Aß to prevent cerebral amyloid angiopathy (CAA) has not been rigorously followed, although the causal role of Aß for CAA and related hemorrhages is undisputed. CAA occurs with normal aging and to various degrees in AD, where its impact and treatment is confounded by the presence of parenchymal Aß deposition. METHODS: APPDutch mice develop CAA in the absence of parenchymal amyloid, mimicking hereditary cerebral hemorrhage with amyloidosis Dutch type (HCHWA-D). Mice were treated with a ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitor. We used 3-dimensional ultramicroscopy and immunoassays for visualizing CAA and assessing Aß in cerebrospinal fluid (CSF) and brain. RESULTS: CAA onset in mice was at 22 to 24 months, first in frontal leptomeningeal and superficial cortical vessels followed by vessels penetrating the cortical layers. CSF Aß increased with aging followed by a decrease of both Aß40 and Aß42 upon CAA onset, supporting the idea that combined reduction of CSF Aß40 and Aß42 is a specific biomarker for vascular amyloid. BACE1 inhibitor treatment starting at CAA onset and continuing for 4 months revealed a 90% Aß reduction in CSF and largely prevented CAA progression and associated pathologies. INTERPRETATION: This is the first study showing that Aß reduction at early disease time points largely prevents CAA in the absence of parenchymal amyloid. Our observation provides a preclinical basis for Aß-reducing treatments in patients at risk of CAA and in presymptomatic HCHWA-D. ANN NEUROL 2019;86:561-571.


Assuntos
Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Angiopatia Amiloide Cerebral/tratamento farmacológico , Progressão da Doença , Ácidos Picolínicos/uso terapêutico , Tiazinas/uso terapêutico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/metabolismo , Encéfalo/irrigação sanguínea , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/líquido cefalorraquidiano , Ácidos Picolínicos/farmacologia , Tiazinas/farmacologia
5.
J Med Chem ; 62(4): 2038-2048, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30707834

RESUMO

A fluorescent bis-styryl-benzothiadiazole (BTD) with carboxylic acid functional groups (X-34/Congo red analogue) showed lower binding affinity toward Aß1-42 and Aß1-40 fibrils than its neutral analogue. Hence, variable patterns of neutral OH-substituted bis-styryl-BTDs were generated. All bis-styryl-BTDs showed higher binding affinity to Aß1-42 fibrils than to Aß1-40 fibrils. The para-OH on the phenyl rings was beneficial for binding affinity while a meta-OH decreased the affinity. Differential staining of transgenic mouse Aß amyloid plaque cores compared to peripheral coronas using neutral compared to anionic bis-styryl ligands indicate differential recognition of amyloid polymorphs. Hyperspectral imaging of transgenic mouse Aß plaque stained with uncharged para-hydroxyl substituted bis-styryl-BTD implicated differences in binding site polarity of polymorphic amyloid plaque. Most properties of the corresponding bis-styryl-BTD were retained with a rigid alkyne linker rendering a probe insensitive to cis-trans isomerization. These new BTD-based ligands are promising probes for spectral imaging of different Aß fibril polymorphs.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Corantes Fluorescentes/farmacologia , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/metabolismo , Estirenos/farmacologia , Tiadiazóis/farmacologia , Animais , Feminino , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Ligantes , Camundongos Transgênicos , Microscopia Confocal , Microscopia de Fluorescência , Ligação Proteica , Estirenos/síntese química , Estirenos/metabolismo , Tiadiazóis/síntese química , Tiadiazóis/metabolismo
6.
Nat Neurosci ; 20(10): 1371-1376, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28846081

RESUMO

To clarify the role of microglia in brain homeostasis and disease, an understanding of their maintenance, proliferation and turnover is essential. The lifespan of brain microglia, however, remains uncertain, and reflects confounding factors in earlier assessments that were largely indirect. We genetically labeled single resident microglia in living mice and then used multiphoton microscopy to monitor these cells over time. Under homeostatic conditions, we found that neocortical resident microglia were long-lived, with a median lifetime of well over 15 months; thus, approximately half of these cells survive the entire mouse lifespan. While proliferation of resident neocortical microglia under homeostatic conditions was low, microglial proliferation in a mouse model of Alzheimer's ß-amyloidosis was increased threefold. The persistence of individual microglia throughout the mouse lifespan provides an explanation for how microglial priming early in life can induce lasting functional changes and how microglial senescence may contribute to age-related neurodegenerative diseases.


Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Microglia/citologia , Microglia/fisiologia , Análise de Célula Única , Animais , Morte Celular , Proliferação de Células , Estimativa de Kaplan-Meier , Camundongos , Camundongos Transgênicos , Microglia/patologia , Microscopia de Fluorescência por Excitação Multifotônica , Neocórtex/fisiologia , Placa Amiloide/patologia
7.
J Neurosci ; 36(18): 5084-93, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27147660

RESUMO

UNLABELLED: The aggregation of amyloid-ß peptide (Aß) in brain is an early event and hallmark of Alzheimer's disease (AD). We combined the advantages of in vitro and in vivo approaches to study cerebral ß-amyloidosis by establishing a long-term hippocampal slice culture (HSC) model. While no Aß deposition was noted in untreated HSCs of postnatal Aß precursor protein transgenic (APP tg) mice, Aß deposition emerged in HSCs when cultures were treated once with brain extract from aged APP tg mice and the culture medium was continuously supplemented with synthetic Aß. Seeded Aß deposition was also observed under the same conditions in HSCs derived from wild-type or App-null mice but in no comparable way when HSCs were fixed before cultivation. Both the nature of the brain extract and the synthetic Aß species determined the conformational characteristics of HSC Aß deposition. HSC Aß deposits induced a microglia response, spine loss, and neuritic dystrophy but no obvious neuron loss. Remarkably, in contrast to in vitro aggregated synthetic Aß, homogenates of Aß deposits containing HSCs induced cerebral ß-amyloidosis upon intracerebral inoculation into young APP tg mice. Our results demonstrate that a living cellular environment promotes the seeded conversion of synthetic Aß into a potent in vivo seeding-active form. SIGNIFICANCE STATEMENT: In this study, we report the seeded induction of Aß aggregation and deposition in long-term hippocampal slice cultures. Remarkably, we find that the biological activities of the largely synthetic Aß aggregates in the culture are very similar to those observed in vivo This observation is the first to show that potent in vivo seeding-active Aß aggregates can be obtained by seeded conversion of synthetic Aß in a living (wild-type) cellular environment.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidose/patologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Neuritos/patologia , Neurônios/patologia , Técnicas de Cultura de Órgãos
8.
Chemistry ; 21(25): 9072-82, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26013403

RESUMO

The accumulation of protein aggregates is associated with many devastating neurodegenerative diseases and the existence of distinct aggregated morphotypes has been suggested to explain the heterogeneous phenotype reported for these diseases. Thus, the development of molecular probes able to distinguish such morphotypes is essential. We report an anionic tetrameric oligothiophene compound that can be utilized for spectral assignment of different morphotypes of ß-amyloid or tau aggregates present in transgenic mice at distinct ages. The ability of the ligand to spectrally distinguish between the aggregated morphotypes was reduced when the spacing between the anionic substituents along the conjugated thiophene backbone was altered, which verified that specific molecular interactions between the ligand and the protein aggregate are necessary to detect aggregate polymorphism. Our findings provide the structural and functional basis for the development of new fluorescent ligands that can distinguish between different morphotypes of protein aggregates.


Assuntos
Peptídeos beta-Amiloides/química , Ânions/química , Substâncias Luminescentes/química , Proteínas/química , Tiofenos/química , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/patologia , Corantes Fluorescentes/química , Humanos , Ligantes , Substâncias Luminescentes/farmacologia , Camundongos , Sondas Moleculares , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia
9.
PLoS One ; 10(5): e0125418, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26017149

RESUMO

Alzheimer´s disease (AD) is the most common neurodegenerative disorder. AD neuropathology is characterized by intracellular neurofibrillary tangles and extracellular ß-amyloid deposits in the brain. To elucidate the complexity of AD pathogenesis a variety of transgenic mouse models have been generated. An ideal imaging system for monitoring ß-amyloid plaque deposition in the brain of these animals should allow 3D-reconstructions of ß-amyloid plaques via a single scan of an uncropped brain. Ultramicroscopy makes this possible by replacing mechanical slicing in standard histology by optical sectioning. It allows a time efficient analysis of the amyloid plaque distribution in the entire mouse brain with 3D cellular resolution. We herein labeled ß-amyloid deposits in a transgenic mouse model of cerebral ß-amyloidosis (APPPS1 transgenic mice) with two intraperitoneal injections of the amyloid-binding fluorescent dye methoxy-X04. Upon postmortem analysis the total number of ß-amyloid plaques, the ß-amyloid load (volume percent) and the amyloid plaque size distributions were measured in the frontal cortex of two age groups (2.5 versus 7-8.5 month old mice). Applying ultramicroscopy we found in a proof-of-principle study that the number of ß-amyloid plaques increases with age. In our experiments we further observed an increase of large plaques in the older age group of mice. We demonstrate that ultramicroscopy is a fast, and accurate analysis technique for studying ß-amyloid lesions in transgenic mice allowing the 3D staging of ß-amyloid plaque development. This in turn is the basis to study neural network degeneration upon cerebral ß-amyloidosis and to assess Aß-targeting therapeutics.


Assuntos
Amiloidose/patologia , Encéfalo/patologia , Microscopia/métodos , Placa Amiloide/patologia , Alcenos/análise , Alcenos/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Derivados de Benzeno/análise , Derivados de Benzeno/metabolismo , Modelos Animais de Doenças , Corantes Fluorescentes/análise , Corantes Fluorescentes/metabolismo , Humanos , Imageamento Tridimensional/métodos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estilbenos
10.
Neurobiol Aging ; 36(7): 2241-2247, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25911278

RESUMO

Endogenous murine amyloid-ß peptide (Aß) is expressed in most Aß precursor protein (APP) transgenic mouse models of Alzheimer's disease but its contribution to ß-amyloidosis remains unclear. We demonstrate ∼ 35% increased cerebral Aß load in APP23 transgenic mice compared with age-matched APP23 mice on an App-null background. No such difference was found for the much faster Aß-depositing APPPS1 transgenic mouse model between animals with or without the murine App gene. Nevertheless, both APP23 and APPPS1 mice codeposited murine Aß, and immunoelectron microscopy revealed a tight association of murine Aß with human Aß fibrils. Deposition of murine Aß was considerably less efficient compared with the deposition of human Aß indicating a lower amyloidogenic potential of murine Aß in vivo. The amyloid dyes Pittsburgh Compound-B and pentamer formyl thiophene acetic acid did not differentiate between amyloid deposits consisting of human Aß and deposits of mixed human-murine Aß. Our data demonstrate a differential effect of murine Aß on human Aß deposition in different APP transgenic mice. The mechanistically complex interaction of human and mouse Aß may affect pathogenesis of the models and should be considered when models are used for translational preclinical studies.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Encéfalo/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos Transgênicos
11.
ACS Chem Biol ; 8(6): 1128-33, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23521783

RESUMO

Deposition of aggregated Aß peptide in the brain is one of the major hallmarks of Alzheimer's disease. Using a combination of two structurally different, but related, hypersensitive fluorescent amyloid markers, LCOs, reporting on separate ultrastructural elements, we show that conformational rearrangement occurs within Aß plaques of transgenic mouse models as the animals age. This important mechanistic insight should aid the design and evaluation of experiments currently using plaque load as readout.


Assuntos
Envelhecimento , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/análise , Encéfalo/patologia , Placa Amiloide/patologia , Animais , Humanos , Camundongos , Camundongos Transgênicos , Imagem Óptica , Conformação Proteica
12.
Am J Pathol ; 181(6): 1953-60, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23041059

RESUMO

In vivo imaging of pathological protein aggregates provides essential knowledge of the kinetics and implications of these lesions in the progression of proteopathies, such as Alzheimer disease. Luminescent conjugated oligothiophenes are amyloid-specific ligands that bind and spectrally distinguish different types of amyloid aggregates. Herein, we report that heptamer formyl thiophene acetic acid (hFTAA) passes the blood-brain barrier after systemic administration and specifically binds to extracellular ß-amyloid deposits in the brain parenchyma (Aß plaques) and in the vasculature (cerebral ß-amyloid angiopathy) of ß-amyloid precursor protein transgenic APP23 mice. Moreover, peripheral application of hFTAA also stained intracellular lesions of hyperphosphorylated Tau protein in P301S Tau transgenic mice. Spectral profiling of all three amyloid types was acquired ex vivo using two-photon excitation. hFTAA revealed a distinct shift in its emission spectra when bound to Aß plaques versus Tau lesions. Furthermore, a spectral shift was observed for Aß plaques versus cerebral ß-amyloid angiopathy, indicating that different amyloid types and structural variances of a specific amyloid type can be distinguished. In conclusion, by adding spectral signatures to amyloid lesions, our results pave the way for a new area of in vivo amyloid imaging, allowing in vivo differentiation of amyloid (sub)types and monitoring changes of their structure/composition over time.


Assuntos
Amiloide/metabolismo , Encéfalo/patologia , Luminescência , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Tiofenos/administração & dosagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Coloração e Rotulagem , Tiofenos/química
13.
J Neurosci ; 32(42): 14548-56, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23077040

RESUMO

We demonstrate label-free imaging of cerebral ß-amyloidosis ex vivo and in a living mouse model of Alzheimer's disease using extended-focus Fourier domain optical coherence microscopy (xfOCM). xfOCM provides 3D, high-resolution images of individual ß-amyloid plaques in the brain parenchyma and vasculature and requires no staining of the alzheimeric sample under investigation. xfOCM also opens the possibility to perform minimally invasive studies of ß-amyloid pathology in vivo, without the use of labeling methods, which potentially confound experimental findings.


Assuntos
Peptídeos beta-Amiloides/química , Angiopatia Amiloide Cerebral/patologia , Modelos Animais de Doenças , Tomografia de Coerência Óptica/métodos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Angiopatia Amiloide Cerebral/genética , Angiopatia Amiloide Cerebral/metabolismo , Análise de Fourier , Humanos , Camundongos , Camundongos Transgênicos , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Neuroimagem/instrumentação , Neuroimagem/métodos , Placa Amiloide/genética , Placa Amiloide/patologia , Coloração e Rotulagem , Tomografia de Coerência Óptica/instrumentação
14.
Acta Neuropathol ; 124(6): 797-807, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22993126

RESUMO

Amyloid-beta plaque deposition represents a major neuropathological hallmark of Alzheimer's disease. While numerous studies have described dendritic spine loss in proximity to plaques, much less is known about the kinetics of these processes. In particular, the question as to whether synapse loss precedes or follows plaque formation remains unanswered. To address this question, and to learn more about the underlying kinetics, we simultaneously imaged amyloid plaque deposition and dendritic spine loss by applying two-photon in vivo microscopy through a cranial window in double transgenic APPPS1 mice. As a result, we first observed that the rate of dendritic spine loss in proximity to plaques is the same in both young and aged animals. However, plaque size only increased significantly in the young cohort, indicating that spine loss persists even many months after initial plaque appearance. Tracking the fate of individual spines revealed that net spine loss is caused by increased spine elimination, with the rate of spine formation remaining constant. Imaging of dendritic spines before and during plaque formation demonstrated that spine loss around plaques commences at least 4 weeks after initial plaque formation. In conclusion, spine loss occurs, shortly but with a significant time delay, after the birth of new plaques, and persists in the vicinity of amyloid plaques over many months. These findings hence give further hope to the possibility that there is a therapeutic window between initial amyloid plaque deposition and the onset of structural damage at spines.


Assuntos
Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Espinhas Dendríticas/patologia , Placa Amiloide/patologia , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Placa Amiloide/metabolismo , Multimerização Proteica , Sinapses/patologia
15.
J Neurosci Methods ; 205(2): 357-63, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22093765

RESUMO

Repetitive in vivo imaging in mice has become an indispensable tool for studying dynamic changes in structure and function of the brain. We describe a head fixation system, which allows rapid re-localization of previously imaged regions of interest (ROIs) within the brain. Such ROIs can be automatically relocated and imaged over weeks to months with negligible rotational change and only minor translational errors. Previously stored imaging positions can be fully automated re-localized within a few seconds. This automated rapid and accurate relocation simplifies image acquisition and post-processing in longitudinal imaging experiments. Moreover, as the laser is only used for data acquisition and not for finding previously imaged ROIs, the risk of laser induced tissue damage and photobleaching is greatly reduced. Thus, here described head fixation device appears well suited for in vivo repetitive long-term imaging in rodent brain.


Assuntos
Microscopia/instrumentação , Neuroimagem/instrumentação , Restrição Física/instrumentação , Animais , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Camundongos , Fótons , Fatores de Tempo
16.
J Neurosci ; 31(2): 624-9, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21228171

RESUMO

Extracellular deposition of the amyloid-ß peptide (Aß) in the brain parenchyma is a hallmark lesion of Alzheimer's disease (AD) and a predictive marker for the progression of preclinical to symptomatic AD. Here, we used multiphoton in vivo imaging to study Aß plaque formation in the brains of 3- to 4-month-old APPPS1 transgenic mice over a period of 6 months. A novel head fixation system provided robust and efficient long-term tracking of single plaques over time. Results revealed an estimated rate of 35 newly formed plaques per cubic millimeter of neocortical volume per week at 4-5 months of age. At later time points (i.e., in the presence of increasing cerebral ß-amyloidosis), the number of newly formed plaques decreased. On average, both newly formed and existing plaques grew at a similar growth rate of 0.3 µm (radius) per week. A solid knowledge of the dynamics of cerebral ß-amyloidosis in mouse models provides a powerful tool to monitor preclinical Aß targeting therapeutic strategies and eases the interpretation of diagnostic amyloid imaging in humans.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloidose/patologia , Encéfalo/patologia , Placa Amiloide/patologia , Animais , Feminino , Gliose/patologia , Proteínas de Fluorescência Verde/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microglia/patologia , Microscopia de Fluorescência por Excitação Multifotônica , Coloração e Rotulagem
17.
Neurobiol Aging ; 32(12): 2324.e1-6, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20970889

RESUMO

APPPS1 transgenic mice develop amyloid-ß 42 (Aß42)-driven early-onset cerebral ß-amyloidosis. Stereological analysis of neocortical neuron number in groups of 2-, 10-, and 17-month-old APPPS1 mice did not reveal any changes compared with wild-type control animals despite massive amyloid-ß (Aß) load and disrupted cytoarchitecture. However, in subregions with high neuron density such as the granule cell layer of the dentate gyrus, modest but significant neuron loss was found, reminiscent of findings in previously published mouse models with late onset cerebral ß-amyloidosis and predominant amyloid-ß 40 (Aß40) expression.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Degeneração Neural/metabolismo , Neuritos/patologia , Neurônios/patologia , Placa Amiloide/metabolismo , Presenilina-1/genética , Fatores Etários , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural/genética , Degeneração Neural/patologia , Neuritos/metabolismo , Neurônios/metabolismo , Placa Amiloide/genética , Placa Amiloide/patologia , Distribuição Aleatória , Índice de Gravidade de Doença
18.
Proc Natl Acad Sci U S A ; 107(17): 7969-74, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20385796

RESUMO

Familial Danish dementia (FDD) is a progressive neurodegenerative disease with cerebral deposition of Dan-amyloid (ADan), neuroinflammation, and neurofibrillary tangles, hallmark characteristics remarkably similar to those in Alzheimer's disease (AD). We have generated transgenic (tg) mouse models of familial Danish dementia that exhibit the age-dependent deposition of ADan throughout the brain with associated amyloid angiopathy, microhemorrhage, neuritic dystrophy, and neuroinflammation. Tg mice are impaired in the Morris water maze and exhibit increased anxiety in the open field. When crossed with TauP301S tg mice, ADan accumulation promotes neurofibrillary lesions, in all aspects similar to the Tau lesions observed in crosses between beta-amyloid (Abeta)-depositing tg mice and TauP301S tg mice. Although these observations argue for shared mechanisms of downstream pathophysiology for the sequence-unrelated ADan and Abeta peptides, the lack of codeposition of the two peptides in crosses between ADan- and Abeta-depositing mice points also to distinguishing properties of the peptides. Our results support the concept of the amyloid hypothesis for AD and related dementias, and suggest that different proteins prone to amyloid formation can drive strikingly similar pathogenic pathways in the brain.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Demência/metabolismo , Modelos Animais de Doenças , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Doença de Alzheimer/etiologia , Animais , Western Blotting , Demência/etiologia , Técnicas Histológicas , Imunoensaio , Glicoproteínas de Membrana , Camundongos , Camundongos Transgênicos , Testes Neuropsicológicos
19.
Am J Pathol ; 175(1): 271-82, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19556514

RESUMO

Alzheimer's disease is characterized by numerous pathological abnormalities, including amyloid beta (Abeta) deposition in the brain parenchyma and vasculature. In addition, intracellular Abeta accumulation may affect neuronal viability and function. In this study, we evaluated the effects of different forms of Abeta on cognitive decline by analyzing the behavioral induction of the learning-related gene Arc/Arg3.1 in three different transgenic mouse models of cerebral amyloidosis (APPPS1, APPDutch, and APP23). Following a controlled spatial exploration paradigm, reductions in both the number of Arc-activated neurons and the levels of Arc mRNA were seen in the neocortices of depositing mice from all transgenic lines (deficits ranging from 14 to 26%), indicating an impairment in neuronal encoding and network activation. Young APPDutch and APP23 mice exhibited intracellular, granular Abeta staining that was most prominent in the large pyramidal cells of cortical layer V; these animals also had reductions in levels of Arc. In the dentate gyrus, striking reductions (up to 58% in aged APPPS1 mice) in the number of Arc-activated cells were found. Single-cell analyses revealed both the proximity to fibrillar amyloid in aged mice, and the transient presence of intracellular granular Abeta in young mice, as independent factors that contribute to reduced Arc levels. These results provide evidence that two independent Abeta pathologies converge in their impact on cognitive function in Alzheimer's disease.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Proteínas do Citoesqueleto/genética , Aprendizagem/fisiologia , Proteínas do Tecido Nervoso/genética , Envelhecimento/patologia , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Citoplasma/química , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Matriz Extracelular , Expressão Gênica , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Neurônios/metabolismo , Neurônios/patologia , RNA Mensageiro/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA