Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Biosci ; 21(12): e2100249, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34510748

RESUMO

Melanin and polydopamine are potent biopolymers for the development of biomedical nanosystems. However, applications of melanin or polydopamine-based nanoparticles are limited by drawbacks related to a compromised colloidal stability over long time periods and associated cytotoxicity. To overcome these hurdles, a novel strategy is proposed that mimics the confinement of natural melanin in melanosomes. Melanosome mimics are developed by co-encapsulating the melanin/polydopamine precursors L-DOPA/dopamine with melanogenic enzyme Tyrosinase within polymersomes. The conditions of polymersome formation are optimized to obtain melanin/polydopamine polymerization within the cavity of the polymersomes. Similar to native melanosomes, polymersomes containing melanin/polydopamine show long-term colloidal stability, cell-compatibility, and potential for cell photoprotection. This novel kind of artificial melanogenesis is expected to inspire new applications of the confined melanin/polydopamine biopolymers.


Assuntos
Indóis , Melaninas , Melanossomas/enzimologia , Monofenol Mono-Oxigenase/química , Polímeros , Linhagem Celular , Humanos , Indóis/síntese química , Indóis/química , Melaninas/síntese química , Melaninas/química , Polímeros/síntese química , Polímeros/química
2.
Adv Mater ; 32(48): e2004804, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33107187

RESUMO

Cells rely upon producing enzymes at precise rates and stoichiometry for maximizing functionalities. The reasons for this optimal control are unknown, primarily because of the interconnectivity of the enzymatic cascade effects within multi-step pathways. Here, an elegant strategy for studying such behavior, by controlling segregation/combination of enzymes/metabolites in synthetic cell-sized compartments, while preserving vital cellular elements is presented. Therefore, compartments shaped into polymer GUVs are developed, producing via high-precision double-emulsion microfluidics that enable: i) tight control over the absolute and relative enzymatic contents inside the GUVs, reaching nearly 100% encapsulation and co-encapsulation efficiencies, and ii) functional reconstitution of biopores and membrane proteins in the GUVs polymeric membrane, thus supporting in situ reactions. GUVs equipped with biopores/membrane proteins and loaded with one or more enzymes are arranged in a variety of combinations that allow the study of a three-step cascade in multiple topologies. Due to the spatiotemporal control provided, optimum conditions for decreasing the accumulation of inhibitors are unveiled, and benefited from reactive intermediates to maximize the overall cascade efficiency in compartments. The non-system-specific feature of the novel strategy makes this system an ideal candidate for the development of new synthetic routes as well as for screening natural and more complex pathways.


Assuntos
Modelos Biológicos , Dispositivos Lab-On-A-Chip , Proteínas de Membrana/metabolismo , Lipossomas Unilamelares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA