RESUMO
Yellow drum (Nibea albiflora), a commercially important fish species in the coastal regions of southeast China, is highly susceptible to red-head disease caused by Vibrio harveyi B0003. Probiotics have been shown to enhance disease resistance in fish, but whether commensal probiotics could improve of the resistance to red-head disease in yellow drum and possible mechanisms has yet not been reported. A six-week feeding trial was conducted to investigate the red-head disease resistance potentials of five probiotic candidates (Bacillus megaterium B1M2, B. subtilis B0E9, Enterococcus faecalis AT5, B. velezensis DM5 and B. siamensis B0E14), and the liver health, serum and skin immunities, gut and skin mucosal microbiota of yellow drum were determined to illustrate the possible mechanisms. The results showed that autochthonous B. subtilis B0E9 and E. faecalis AT5 (particularly E. faecalis AT5, P < 0.05) effectively improved red-head disease resistance in yellow drum. Furthermore, B. subtilis B0E9 and E. faecalis AT5 (particularly E. faecalis AT5) efficiently improve liver health by improving liver morphology and decreasing serum glutamic oxaloacetic transaminase and glutamic propylic transaminase activities pre and post challenged with V. harveyi B0003 (P < 0.05). B. subtilis B0E9 and E. faecalis AT5 led to significant improvement (P < 0.05) in the serum complement 3 content (un-detected after challenged with V. harveyi B0003), lysozyme activity and skin mucosal immunity (such as IL-6, IL-10 and lysozyme expression) pre and post challenged with V. harveyi B0003, which was generally consistent with the cumulative mortality after challenged with V. harveyi B0003. This induced activations of serum and skin mucosal immunities were consistent with the microbiota data showing that B. subtilis B0E9 and E. faecalis AT5 modulated the overall structure of intestinal and skin mucosal microbiota, and in particular, the relative abundance of potentially pathogenic Achromobacter decreased while beneficial Streptococcus, Rothia, and Lactobacillus increased in fish fed with B. subtilis B0E9 and E. faecalis AT5. Overall, autochthonous B. subtilis B0E9 and E. faecalis AT5 (particularly E. faecalis AT5) can improve liver health, serum and skin immunities (especially up-regulated lysozyme activity and inflammation-related genes expression), positively shape gut and skin mucosal microbiota, and enhance red-head disease resistance of yellow drum.
Assuntos
Doenças dos Peixes , Microbiota , Perciformes , Probióticos , Animais , Resistência à Doença , Bacillus subtilis , Imunidade nas Mucosas , Enterococcus faecalis , Muramidase , Probióticos/farmacologia , Peixes , FígadoRESUMO
Antimicrobial peptides (AMPs) play an important role in modulating intestinal microbiota, and our previous study showed that autochthonous Baccilus siamensis LF4 could shape the intestinal microbiota of spotted seabass (Lateolabrax maculatus). In the present study, a spotted seabass intestinal epithelial cells (IECs) model was used to investigate whether autochthonous B. siamensis LF4 could modulate the expression of AMPs in IECs. And then, the IECs were treated with active, heat-inactivated LF4 and its supernatant to illustrate their AMPs inducing effects and the possible signal transduction mechanisms. The results showed that after 3 h of incubation with 108 CFU/mL B. siamensis LF4, lactate dehydrogenase (LDH), glutamic oxaloacetic transaminase (GOT), glutamic propylic transaminase (GPT) activities in supernatant decreased significantly and obtained minimum values, while supernatant alkaline phosphatase (AKP) activity, ß-defensin protein level and IECs Na+/K+-ATPase activity, AMPs (ß-defensin, hepcidin-1, NK-lysin, piscidin-5) genes expression increased significantly and obtained maximum values (P < 0.05). Further study demonstrated that the active, heat-inactivated LF4 and its supernatant treatments could effectively decrease the LDH, GOT, and GPT activities in IECs supernatant, increase AKP activity and ß-defensin (except LF4 supernatant treatment) protein level in IECs supernatant and Na+/K+-ATPase and AMPs genes expression in IECs. Treatment with active and heat-inactivated B. siamensis LF4 resulted in significantly up-regulated the expressions of TLR1, TLR2, TLR3, TLR5, NOD1, NOD2, TIRAP, MyD88, IRAK1, IRAK4, TRAF6, TAB1, TAB2, ERK, JNK, p38, AP-1, IKKα, IKKß and NF-κB genes. Treatment with B. siamensis LF4 supernatant also resulted in up-regulated these genes, but not the genes (ERK, JNK, p38, and AP-1) in MAPKs pathway. In summary, active, heat-inactivated and supernatant of B. siamensis LF4 can efficiently induce AMPs expression through activating the TLRs/NLRs-MyD88-dependent signaling, active and heat-inactivated LF4 activated both the downstream MAPKs and NF-κB pathways, while LF4 supernatant only activated NF-κB pathway.