Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 352: 124131, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38734049

RESUMO

Polyethylene terephthalate (PET) plastic pollution is widely found in deep-sea sediments. Despite being an international environmental issue, it remains unclear whether PET can be degraded through bioremediation in the deep sea. Pelagic sediments obtained from 19 sites across a wide geographic range in the Pacific Ocean were used to screen for bacteria with PET degrading potential. Bacterial consortia that could grow on PET as the sole carbon and energy source were found in 10 of the 19 sites. These bacterial consortia showed PET removal rate of 1.8%-16.2% within two months, which was further confirmed by the decrease of carbonyl and aliphatic hydrocarbon groups using attenuated total reflectance-Fourier-transform infrared analysis (ATR-FTIR). Analysis of microbial diversity revealed that Alcanivorax and Pseudomonas were predominant in all 10 PET degrading consortia. Meanwhile, Thalassospira, Nitratireductor, Nocardioides, Muricauda, and Owenweeksia were also found to possess PET degradation potential. Metabolomic analysis showed that Alcanivorax sp. A02-7 and Pseudomonas sp. A09-2 could turn PET into mono-(2-hydroxyethyl) terephthalate (MHET) even in situ stimulation (40 MPa, 10 °C) conditions. These findings widen the currently knowledge of deep-sea PET biodegrading process with bacteria isolates and degrading mechanisms, and indicating that the marine environment is a source of biotechnologically promising bacterial isolates and enzymes.


Assuntos
Bactérias , Biodegradação Ambiental , Sedimentos Geológicos , Polietilenotereftalatos , Poluentes Químicos da Água , Polietilenotereftalatos/metabolismo , Oceano Pacífico , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Bactérias/metabolismo , Bactérias/isolamento & purificação , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Água do Mar/microbiologia , Pseudomonas/metabolismo
2.
Ecotoxicol Environ Saf ; 266: 115588, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839193

RESUMO

High concentration of ammonia poses a common threat to the healthy breeding of marine aquaculture organisms. Since aquaculture water is rich in organic matter, heterotrophic nitrifying bacteria might play a crucial role in ammonia removal. However, their roles in ammonia oxidation remain unknown. Here, we report a novel strain isolated from shrimp aquaculture seawater, identified as Sneathiella aquimaris 216LB-ZA1-12T, capable of heterotrophic nitrification. It is the first characterized heterotrophic nitrifier of the order Sneathiellales in the class Alphaproteobacteria. It exhibits high activity in heterotrophic nitrification, removing nearly 94% of ammonium-N under carbon-constrained conditions in 8 days with no observed nitrite accumulation. The heterotrophic nitrification pathway, inferred based on detection and genomic data was as follows: NH4+→NH2OH→NO→NO2-→NO3-. While this pathway aligns with the classical nitrification pathway, while the significant difference lies in the absence of classical HAO and HOX encoding genes in the genome, which is common in heterotrophic nitrifying bacteria. In summary, this bacterium is not only valuable for studying the nitrifying mechanism, but also holds potential for practical applications in ammonia removal in marine aquaculture systems and saline wastewater.


Assuntos
Alphaproteobacteria , Nitrificação , Desnitrificação , Amônia/metabolismo , Aerobiose , Nitritos/metabolismo , Bactérias/metabolismo , Processos Heterotróficos , Aquicultura , Água do Mar/microbiologia , Alphaproteobacteria/metabolismo , Nitrogênio/metabolismo
3.
Microbiol Spectr ; : e0399022, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37754757

RESUMO

Although gut bacteria are vital to their hosts, few studies have focused on marine animals. Psychrilyobacter is frequently related to various marine animals, but its interaction with host remains unknown due to the lack of host-associated isolate or genomic information. Here, we combined cultivation-independent and cultivation-dependent methods to uncover the potential roles of Psychrilyobacter in the host abalone. The high-throughput sequencing and literature compiling results indicated that Psychrilyobacter is widely distributed in marine and terrestrial ecosystems with both host-associated and free-living lifestyles, but with a strong niche preference in the guts of marine invertebrates, especially abalone. By in vitro enrichment that mimicked the gut inner environment, the first host-related pure culture of Psychrilyobacter was isolated from the abalone intestine. Phylogenetic, physiological, and biochemical characterizations suggested that it represents a novel species named Psychrilyobacter haliotis B1. Carbohydrate utilization experiments and genomic evidence indicated that B1 can utilize diverse host-food-related monosaccharides and disaccharides but not polysaccharides, implying its potential role in the downstream fermentation instead of the upstream food degradation in the gut. Particularly, this strain showed potential to colonize the gut and benefit the host via different strategies, such as the short-chain fatty acids generation by fermenting peptides and/or amino acids, and the putative production of diverse vitamins and antibiotics to support the host growth and antipathogenicity. To our knowledge, strain B1 represents the first host-related pure culture of Psychrilyobacter; genomic and metabolic evidence showed some beneficial characteristics of the dominant gut anaerobe to the host. IMPORTANCE Psychrilyobacter is a globally distributed bacterial genus and with an inhabiting preference for guts of marine invertebrates. Due to the difficulty of cultivation and the limited genomic information, its role in host remains largely unknown. We isolated the first host-associated Psychrilyobacter species from abalone gut and uncovered its functional potential to the host through different mechanisms. Our findings provide some insights into the understanding of host-microbe interactions on a core taxon with the marine invertebrates, and the isolate may have an application potential in the protection of marine animals.

4.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36555635

RESUMO

Alkanes are widespread in the ocean, and Alcanivorax is one of the most ubiquitous alkane-degrading bacteria in the marine ecosystem. Small RNAs (sRNAs) are usually at the heart of regulatory pathways, but sRNA-mediated alkane metabolic adaptability still remains largely unknown due to the difficulties of identification. Here, differential RNA sequencing (dRNA-seq) modified with a size selection (~50-nt to 500-nt) strategy was used to generate high-resolution sRNAs profiling in the model species Alcanivorax dieselolei B-5 under alkane (n-hexadecane) and non-alkane (acetate) conditions. As a result, we identified 549 sRNA candidates at single-nucleotide resolution of 5'-ends, 63.4% of which are with transcription start sites (TSSs), and 36.6% of which are with processing sites (PSSs) at the 5'-ends. These sRNAs originate from almost any location in the genome, regardless of intragenic (65.8%), antisense (20.6%) and intergenic (6.2%) regions, and RNase E may function in the maturation of sRNAs. Most sRNAs locally distribute across the 15 reference genomes of Alcanivorax, and only 7.5% of sRNAs are broadly conserved in this genus. Expression responses to the alkane of several core conserved sRNAs, including 6S RNA, M1 RNA and tmRNA, indicate that they may participate in alkane metabolisms and result in more actively global transcription, RNA processing and stresses mitigation. Two novel CsrA-related sRNAs are identified, which may be involved in the translational activation of alkane metabolism-related genes by sequestering the global repressor CsrA. The relationships of sRNAs with the characterized genes of alkane sensing (ompS), chemotaxis (mcp, cheR, cheW2), transporting (ompT1, ompT2, ompT3) and hydroxylation (alkB1, alkB2, almA) were created based on the genome-wide predicted sRNA-mRNA interactions. Overall, the sRNA landscape lays the ground for uncovering cryptic regulations in critical marine bacterium, among which both the core and species-specific sRNAs are implicated in the alkane adaptive metabolisms.


Assuntos
Alcanivoraceae , Pequeno RNA não Traduzido , Alcanivoraceae/genética , Alcanivoraceae/metabolismo , Ecossistema , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Sequência de Bases , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Regulação Bacteriana da Expressão Gênica
5.
Nat Commun ; 13(1): 4885, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35985998

RESUMO

Microbially mediated nitrogen cycling in carbon-dominated cold seep environments remains poorly understood. So far anaerobic methanotrophic archaea (ANME-2) and their sulfate-reducing bacterial partners (SEEP-SRB1 clade) have been identified as diazotrophs in deep sea cold seep sediments. However, it is unclear whether other microbial groups can perform nitrogen fixation in such ecosystems. To fill this gap, we analyzed 61 metagenomes, 1428 metagenome-assembled genomes, and six metatranscriptomes derived from 11 globally distributed cold seeps. These sediments contain phylogenetically diverse nitrogenase genes corresponding to an expanded diversity of diazotrophic lineages. Diverse catabolic pathways were predicted to provide ATP for nitrogen fixation, suggesting diazotrophy in cold seeps is not necessarily associated with sulfate-dependent anaerobic oxidation of methane. Nitrogen fixation genes among various diazotrophic groups in cold seeps were inferred to be genetically mobile and subject to purifying selection. Our findings extend the capacity for diazotrophy to five candidate phyla (Altarchaeia, Omnitrophota, FCPU426, Caldatribacteriota and UBA6262), and suggest that cold seep diazotrophs might contribute substantially to the global nitrogen balance.


Assuntos
Ecossistema , Sedimentos Geológicos , Archaea/metabolismo , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Nitrogênio/metabolismo , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Água do Mar/microbiologia , Sulfatos/metabolismo
6.
J Hazard Mater ; 440: 129699, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35963094

RESUMO

This study explored chlorinated paraffin (CP)-degrading bacteria from the marine environment. Aequorivita, Denitromonas, Parvibaculum, Pseudomonas and Ignavibacterium were selected as the dominant genera after enrichment with chlorinated paraffin 52 (CP52) as the sole carbon source. Eight strains were identified as CP degraders, including Pseudomonas sp. NG6 and NF2, Erythrobacter sp. NG3, Castellaniella sp. NF6, Kordiimonas sp. NE3, Zunongwangia sp. NF12, Zunongwangia sp. NH1 and Chryseoglobus sp. NF13, and their degradation efficiencies ranged from 6.4% to 19.0%. In addition to Pseudomonas, the other six genera of bacteria were first reported to have the degradation ability of CPs. Bacterial categories, carbon-chain lengths and chlorination degrees were three crucial factors affecting the degradation efficiencies of CPs, with their influential ability of chlorinated degrees > bacterial categories > carbon-chain lengths. CP degradation can be performed by producing chlorinated alcohols, chlorinated olefins, dechlorinated alcohols and lower chlorinated CPs. This study will provide valuable information on CP biotransformation and targeted bacterial resources for studying the transformation processes of specific CPs in marine environments.


Assuntos
Hidrocarbonetos Clorados , Parafina , Álcoois , Alcenos , Bactérias , Carbono , China , Monitoramento Ambiental , Hidrocarbonetos Clorados/análise , Parafina/análise
7.
PLoS One ; 16(5): e0250571, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33989289

RESUMO

Soil microbial communities are affected by interactions between agricultural management (e.g., fertilizer) and soil compartment, but few studies have considered combinations of these factors. We compared the microbial abundance, diversity and community structure in two fertilizer dose (high vs. low NPK) and soil compartment (rhizosphere vs. bulk soils) under 6-year fertilization regimes in a continuous garlic cropping system in China. The soil contents of NO3- and available K were significantly higher in bulk soil in the high-NPK. The 16S rRNA gene-based bacterial and archaeal abundances were positively affected by both the fertilizer dose and soil compartment, and were higher in the high-NPK fertilization and rhizosphere samples. High-NPK fertilization increased the Shannon index and decreased bacterial and archaeal richness, whereas the evenness was marginally positively affected by both the fertilizer dose and soil compartment. Soil compartment exerted a greater effect on the bacterial and archaeal community structure than did the fertilization dose, as demonstrated by both the nonmetric multidimensional scaling and redundancy analysis results. We found that rhizosphere effects significantly distinguished 12 dominant classes of bacterial and archaeal communities, whereas the fertilizer dose significantly identified four dominant classes. In particular, a Linear Effect Size analysis showed that some taxa, including Alphaproteobacteria, Rhizobiales, Xanthomonadaceae and Flavobacterium, were enriched in the garlic rhizosphere of the high-NPK fertilizer samples. Overall, the fertilizer dose interacted with soil compartment to shape the bacterial and archaeal community composition, abundance, and biodiversity in the garlic rhizosphere. These results provide an important basis for further understanding adaptive garlic-microbe feedback, reframing roots as a significant moderating influence in agricultural management and shaping the microbial community.


Assuntos
Archaea/genética , Bactérias/genética , Fertilizantes/análise , Alho/crescimento & desenvolvimento , Rizosfera , Microbiologia do Solo/normas , Solo/química , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Biodiversidade , China , Alho/genética , Alho/microbiologia , RNA Ribossômico 16S/genética
8.
ISME J ; 15(8): 2366-2378, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33649554

RESUMO

In marine ecosystems, viruses exert control on the composition and metabolism of microbial communities, influencing overall biogeochemical cycling. Deep sea sediments associated with cold seeps are known to host taxonomically diverse microbial communities, but little is known about viruses infecting these microorganisms. Here, we probed metagenomes from seven geographically diverse cold seeps across global oceans to assess viral diversity, virus-host interaction, and virus-encoded auxiliary metabolic genes (AMGs). Gene-sharing network comparisons with viruses inhabiting other ecosystems reveal that cold seep sediments harbour considerable unexplored viral diversity. Most cold seep viruses display high degrees of endemism with seep fluid flux being one of the main drivers of viral community composition. In silico predictions linked 14.2% of the viruses to microbial host populations with many belonging to poorly understood candidate bacterial and archaeal phyla. Lysis was predicted to be a predominant viral lifestyle based on lineage-specific virus/host abundance ratios. Metabolic predictions of prokaryotic host genomes and viral AMGs suggest that viruses influence microbial hydrocarbon biodegradation at cold seeps, as well as other carbon, sulfur and nitrogen cycling via virus-induced mortality and/or metabolic augmentation. Overall, these findings reveal the global diversity and biogeography of cold seep viruses and indicate how viruses may manipulate seep microbial ecology and biogeochemistry.


Assuntos
Sedimentos Geológicos , Microbiota , Metano , Oceanos e Mares , Filogenia , RNA Ribossômico 16S
9.
FEMS Microbiol Ecol ; 97(5)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33720296

RESUMO

Marine sediments can contain large amounts of alkanes and methylated aromatic hydrocarbons that are introduced by natural processes or anthropogenic activities. These compounds can be biodegraded by anaerobic microorganisms via enzymatic addition of fumarate. However, the identity and ecological roles of a significant fraction of hydrocarbon degraders containing fumarate-adding enzymes (FAE) in various marine sediments remains unknown. By combining phylogenetic reconstructions, protein homolog modelling, and functional profiling of publicly available metagenomes and genomes, 61 draft bacterial and archaeal genomes encoding anaerobic hydrocarbon degradation via fumarate addition were obtained. Besides Desulfobacterota (previously known as Deltaproteobacteria) that are well-known to catalyze these reactions, Chloroflexi are dominant FAE-encoding bacteria in hydrocarbon-impacted sediments, potentially coupling sulfate reduction or fermentation to anaerobic hydrocarbon degradation. Among Archaea, besides Archaeoglobi previously shown to have this capability, genomes of Heimdallarchaeota, Lokiarchaeota, Thorarchaeota and Thermoplasmata also suggest fermentative hydrocarbon degradation using archaea-type FAE. These bacterial and archaeal hydrocarbon degraders occur in a wide range of marine sediments, including high abundances of FAE-encoding Asgard archaea associated with natural seeps and subseafloor ecosystems. Our results expand the knowledge of diverse archaeal and bacterial lineages engaged in anaerobic degradation of alkanes and methylated aromatic hydrocarbons.


Assuntos
Archaea , Fumaratos , Anaerobiose , Archaea/genética , Bactérias/genética , Sedimentos Geológicos , Hidrocarbonetos , Filogenia
10.
Curr Microbiol ; 77(8): 1496-1505, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32239287

RESUMO

Water and sediment have always been closely tied in aquatic systems. However, little information regarding the full extent of microeukaryotic composition in both the two habitats did we know especially in estuaries. In the present study, the microeukaryotic abundance, diversity, composition, and their response to environmental factors between sediment and water in the Yellow River Estuary (YRE) were investigated. The microeukaryotic 18S rRNA gene abundance ranged from 1.03 × 106 to 5.48 × 107 copies/g dry for sediment, and 3.01 × 104 to 1.25 × 106 copies/mL for water. The distribution patterns of eukaryotic microorganisms could be clustered into two different branches. And the compositions of microeukaryotes in the two habitats were distinct obviously. Metazoa, Fungi, Streptophyta, Ochrophyta, Cercozoa, and Dinophyta were more abundant in sediment. The dominant phyla in water were Dinophyta, followed by Metazoa, Ochrophyta, Cryptophyta, Chloroplyta, Cercozoa, Fungi, Katablepharidophyta, Choanoflagellida, and Haptophyta. Interestingly, the eukaryotic microorganisms detected in sediment were much less sensitive to environmental variables compared with water. Furthermore, their potential co-occurrence networks in particular were also discovered in the present study. As such, we have provided baseline data to support further research on estuarine microeukaryotes in both sediment and water, which was useful for guiding the practical application of ecosystem management and biodiversity protection.


Assuntos
Estuários , Eucariotos/classificação , Sedimentos Geológicos , Microbiota , Microbiologia da Água , China , RNA Ribossômico 18S/genética , Rios
11.
Microbiome ; 7(1): 14, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30709420

RESUMO

BACKGROUND: Soil microorganisms can mediate the occurrence of plant diseases. Potato common scab (CS) is a refractory disease caused by pathogenic Streptomyces that occurs worldwide, but little is known about the interactions between CS and the soil microbiome. In this study, four soil-root system compartments (geocaulosphere soil (GS), rhizosphere soil (RS), root-zone soil (ZS), and furrow soil (FS)) were analyzed for potato plants with naturally high (H) and low (L) scab severity levels. We aimed to determine the composition and putative function of the soil microbiome associated with potato CS. RESULTS: The copy numbers of the scab phytotoxin biosynthetic gene txtAB and the bacterial 16S rRNA gene as well as the diversity and composition of each of the four soil-root system compartments were examined; GS was the only compartment that exhibited significant differences between the H and L groups. Compared to the H group, the L group exhibited a lower txtAB gene copy number, lower bacterial 16S copy number, higher diversity, higher co-occurrence network complexity, and higher community function similarity within the GS microbiome. The community composition and function of the GS samples were further revealed by shotgun metagenomic sequencing. Variovorax, Stenotrophomonas, and Agrobacterium were the most abundant genera that were significantly and positively correlated with the scab severity level, estimated absolute abundance (EAA) of pathogenic Streptomyces, and txtAB gene copy number. In contrast, Geobacillus, Curtobacterium, and unclassified Geodermatophilaceae were significantly negatively correlated with these three parameters. Compared to the function profiles in the L group, several genes involved in "ABC transporters," the "bacterial secretion system," "quorum sensing (QS)," "nitrogen metabolism," and some metabolism by cytochrome P450 were enriched in the H group. In contrast, some antibiotic biosynthesis pathways were enriched in the L group. Based on the differences in community composition and function, a simple model was proposed to explain the putative relationships between the soil microbiome and CS occurrence. CONCLUSIONS: The GS microbiome was closely associated with CS severity in the soil-root system, and the occurrence of CS was accompanied by changes in community composition and function. The differential functions provide new clues to elucidate the mechanism underlying the interaction between CS occurrence and the soil microbiome, and varying community compositions provide novel insights into CS occurrence.


Assuntos
Microbiota/genética , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Streptomyces/classificação , Streptomyces/isolamento & purificação , Sedimentos Geológicos/microbiologia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Microbiologia do Solo , Streptomyces/genética
12.
Sci Rep ; 8(1): 1584, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29371667

RESUMO

Ammonia oxidation is a critical process of estuarine nitrogen cycling involving ammonia-oxidizing archaea (AOA) and bacteria (AOB). However, the distribution patterns of ammonia-oxidizing microorganisms (AOMs) between different habitats in the same area remain unclear. The present study investigated the AOMs' abundance and community compositions in both sediment and water habitats of the Yellow River estuary. Quantitative PCR (qPCR) revealed that AOA showed significant higher abundance than AOB both in sediment and water samples. AOA and AOB abundance distribution trends were consistent in sediment but distinct in water along the sampling sites. Clone library-based analyses showed that AOA sequences were affiliated with Nitrososphaera, Nitrosopumilus and Nitrosotalea clusters. Generally, Nitrososphaera was predominant in sediment, while Nitrosopumilus and Nitrosotalea dominated in water column. AOB sequences were classified into genera Nitrosospira and Nitrosomonas, and Nitrosospira dominated in both habitats. Principal coordinate analysis (PCoA) also indicated AOA community structures exhibited significant differences between two habitats, while AOB were not. Ammonium and carbon contents were the potential key factors to influence AOMs' abundance and compositions in sediment, while no measured variables were determined to have major influences on communities in water habitat. These findings increase the understanding of the AOMs' distribution patterns in estuarine ecosystems.


Assuntos
Amônia/metabolismo , Archaea/classificação , Bactérias/classificação , Biota , Estuários , Sedimentos Geológicos/microbiologia , Rios/microbiologia , Compostos de Amônio/análise , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Carbono/análise , China , Sedimentos Geológicos/química , Oxirredução , Água/química
13.
Appl Microbiol Biotechnol ; 100(22): 9683-9697, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27557722

RESUMO

There are close exchanges between sediment and water in estuaries; however, the patterns of prokaryotic community assembly in these two habitat types are still unclear. This study investigated the bacterial and archaeal abundance, diversity, and community composition in the sediment and the overlying water of the Yellow River estuary. Notably higher prokaryotic abundance and diversity were detected in the sediment than in the water, and bacterial abundance and diversity were remarkably higher than those of archaea. Furthermore, the ratio of bacterial to archaeal 16S rRNA gene abundance was significantly lower in the sediment than in the water. Bacterial communities at different taxonomic levels were apparently distinct between the sediment and water, but archaeal communities were not. The most dominant bacteria were affiliated with Deltaproteobacteria and Gammaproteobacteria in sediment and with Alphaproteobacteria and Betaproteobacteria in water. Euryarchaeota and Thaumarchaeota were the most abundant archaea in both habitats. Although distinct prokaryotic distribution patterns were observed, most of the dominant bacteria and archaea present were related to carbon, nitrogen, and sulfur cycling processes, such as methanogenesis, ammonia oxidation, and sulfate reduction. Unexpectedly, prokaryotes from the water showed a higher sensitivity to environmental factors, while only a few factors affected sediment communities. Additionally, some potential co-occurrence relationships between prokaryotes were also found in this study. These results suggested distinct distribution patterns of bacterial and archaeal communities between sediment and overlying water in this important temperate estuary, which may serve as a useful community model for the further ecological and evolutionary study of prokaryotes in estuarine ecosystems.


Assuntos
Archaea/classificação , Bactérias/classificação , Biota , Estuários , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Rios/microbiologia , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
PLoS One ; 10(9): e0137996, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26368535

RESUMO

Nitrite-dependent anaerobic methane oxidation (n-damo) is performed by "Candidatus Methylomirabilis oxyfera" (M. oxyfera), which connects the carbon and nitrogen global nutrient cycles. In the present study, M. oxyfera-like bacteria sequences were successfully recovered from Yellow River Estuary sediments using specific primers for 16S rRNA and pmoA genes. A M. oxyfera-like sequences analysis based on the 16S rRNA gene revealed greater diversity compared with the pmoA gene; the 16S rRNA gene sequences retrieved from the Yellow River Estuary sediments belong to groups A as well as B and were mainly found in freshwater habitats. Quantitative PCR showed that 16S rRNA gene abundance varied from 9.28±0.11×10(3) to 2.10±0.13×10(5) copies g(-1) (dry weight), and the pmoA gene abundance ranged from 8.63±0.50×10(3) to 1.83±0.18×10(5) copies g(-1) (dry weight). A correlation analysis showed that the total organic carbon (TOC) and ammonium (NH4(+)) as well as the ratio of total phosphorus to total nitrogen (TP/TN) influenced the M. oxyfera-like bacteria distribution in the Yellow River Estuary sediments. These findings will aid in understanding the n-damo bacterial distribution pattern as well as their correlation with surrounding environmental factors in temperate estuarine ecosystems.


Assuntos
Bactérias Anaeróbias , Impressões Digitais de DNA , Metano/metabolismo , Nitritos/metabolismo , Rios/microbiologia , Microbiologia da Água , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/metabolismo , China , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
15.
Microbiol Res ; 175: 16-23, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25794799

RESUMO

Marine bacterioplankton communities have profound impact on global biogeochemical cycles and ecological balances. However, relatively little is known about the bacterioplankton communities and the factors shaping their spatial distribution in subtropical island. Here, the bacterioplankton communities around a typical subtropical island, Xiamen Island, were revealed by analyzing bacterial 16S rRNA gene through quantitative PCR (qPCR) and 454 pyrosequencing methods. The qPCR results indicated that the abundance of 16S rRNA gene ranged from 2.07 × 10(7) to 2.13 × 10(8)copies mL(-1) in surface seawater among eight sampling sites (S1-S8) around Xiamen Island, and the nitrogen and phosphorus-rich sites (S5 and S8) were detected with higher 16S rRNA gene abundance. Pyrosequencing evidenced that a total of 267 genera of 47 classes in 26 different phyla (or candidate phyla) and some unclassified bacteria were obtained from seawater around Xiamen Island. The most dominant phylum was Proteobacteria (49.62-76.84% among sites), followed by Bacteroidetes (6.64-20.88%), Actinobacteria (2.58-9.20%), Firmicutes (0.03-13.30%), Verrucomicrobia (0.23-2.67%) and Planctomycetes (0.14-2.20%). Among eight sites, the nitrogen and phosphorus-rich sites (S5 and S8) exhibited higher proportions of Gammaproteobacteria, Epsilonproteobacteria, Firmicutes and lower proportions of Alphaproteobacteria and Planctomycetes than other sites. S5 and S8 also had more similar ß-diversity, and sampling site near the estuary (S8) showed the highest bacterial diversity. Redundancy analysis (RDA) confirmed that total nitrogen and total phosphorus significantly (P<0.05 and P<0.01, respectively) influenced the bacterioplankton communities around Xiamen Island. These results will provide insights into bacterial abundance, diversity and distribution patterns, as well as their controlling factors, in subtropical marine ecosystems.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biota , Plâncton/microbiologia , Água do Mar/microbiologia , Carga Bacteriana , China , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Clima Tropical
16.
J Microbiol Biotechnol ; 24(10): 1308-18, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24950882

RESUMO

The specific freshwater environment of reservoirs formed by streams has not been well studied. In this paper, the bacterioplankton community in such a reservoir, the Huangqian Reservoir in eastern China, was described using culture-independent molecular methods. We found that the most dominant bacterioplankton were affiliated with Cyanobacteria, followed by Betaproteobacteria, Bacteroidetes, Gammaproteobacteria, and Actinobacteria. Both bacterial abundance and diversity increased along the direction of water flow, and the 16S rRNA gene copy number in the water outlet was nearly an order of magnitude higher than that in the water inlet. Pearson correlation analyses indicated that nitrate had a significantly negative correlation with the bacterial abundance (p < 0.05) and that ammonium was positively correlated with bacterial abundance (p < 0.05). Interestingly, owing to a remarkably negative correlation (p < 0.01), the ratio of nitrate and ammonium might serve as a good pre dictor of the relative abundance of bacterioplankton. According to redundancy analysis, nitrate and dissolved oxygen were the major factors influencing the bacterial communities. In addition, we attempted to determine the reasons why such a reservoir could maintain good ecological balance for a period of decades, and we found that the environmental factors and bacterial communities both played critical roles. This research will benefit our understanding of bacterial communities and their surrounding environments in freshwater ecosystems.


Assuntos
Bactérias/classificação , Bactérias/genética , Biota , Microbiologia da Água , Compostos de Amônio/análise , China , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Nitratos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Água/química
17.
Genome Announc ; 2(2)2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24604650

RESUMO

Catenovulum sp. strain DS-2, isolated from intestines of Haliotis diversicolor, is able to degrade agar and produce agaro-oligosaccharides. Here, we report the draft genome sequence of Catenovulum sp. strain DS-2.

18.
Genome Announc ; 2(2)2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24604651

RESUMO

Cellulophaga sp. strain KL-A, isolated from decaying marine algae, is able to degrade iota-carrageenan. Here, we report the draft genome sequence of Cellulophaga sp. strain KL-A.

19.
Microbes Environ ; 29(1): 107-10, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24621509

RESUMO

We investigated the diversity and community composition of denitrifying bacteria in surface water from the Yellow River estuary. Our results indicated that the diversity of the denitrifying community in freshwater based on the nirK gene was higher than that in seawater. Furthermore, phylogenetic analysis suggested that the bacteria community could be distributed into eight clusters (Clusters I to VIII). Redundancy analysis (RDA) revealed that community compositions were related to multiple environment factors, such as salinity and nitrate concentration. The results of the present study have provided a novel insight into the denitrifying community in water columns in estuaries.


Assuntos
Bactérias/enzimologia , Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Biodiversidade , Nitrito Redutases/metabolismo , Rios/microbiologia , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , China , Desnitrificação , Estuários , Dados de Sequência Molecular , Nitrito Redutases/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA