Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
JAMA Netw Open ; 4(11): e2135271, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792588

RESUMO

Importance: Colorectal polyps are common, and their histopathologic classification is used in the planning of follow-up surveillance. Substantial variation has been observed in pathologists' classification of colorectal polyps, and improved assessment by pathologists may be associated with reduced subsequent underuse and overuse of colonoscopy. Objective: To compare standard microscopic assessment with an artificial intelligence (AI)-augmented digital system that annotates regions of interest within digitized polyp tissue and predicts polyp type using a deep learning model to assist pathologists in colorectal polyp classification. Design, Setting, and Participants: In this diagnostic study conducted at a tertiary academic medical center and a community hospital in New Hampshire, 100 slides with colorectal polyp samples were read by 15 pathologists using a microscope and an AI-augmented digital system, with a washout period of at least 12 weeks between use of each modality. The study was conducted from February 10 to July 10, 2020. Main Outcomes and Measures: Accuracy and time of evaluation were used to compare pathologists' performance when a microscope was used with their performance when the AI-augmented digital system was used. Outcomes were compared using paired t tests and mixed-effects models. Results: In assessments of 100 slides with colorectal polyp specimens, use of the AI-augmented digital system significantly improved pathologists' classification accuracy compared with microscopic assessment from 73.9% (95% CI, 71.7%-76.2%) to 80.8% (95% CI, 78.8%-82.8%) (P < .001). The overall difference in the evaluation time per slide between the digital system (mean, 21.7 seconds; 95% CI, 20.8-22.7 seconds) and microscopic examination (mean, 13.0 seconds; 95% CI, 12.4-13.5 seconds) was -8.8 seconds (95% CI, -9.8 to -7.7 seconds), but this difference decreased as pathologists became more familiar and experienced with the digital system; the difference between the time of evaluation on the last set of 20 slides for all pathologists when using the microscope and the digital system was 4.8 seconds (95% CI, 3.0-6.5 seconds). Conclusions and Relevance: In this diagnostic study, an AI-augmented digital system significantly improved the accuracy of pathologic interpretation of colorectal polyps compared with microscopic assessment. If applied broadly to clinical practice, this tool may be associated with decreases in subsequent overuse and underuse of colonoscopy and thus with improved patient outcomes and reduced health care costs.


Assuntos
Inteligência Artificial , Pólipos do Colo/classificação , Pólipos do Colo/diagnóstico por imagem , Pólipos do Colo/diagnóstico , Neoplasias Colorretais/classificação , Neoplasias Colorretais/diagnóstico , Microscopia , Pólipos do Colo/patologia , Confiabilidade dos Dados , Testes Diagnósticos de Rotina/métodos , Humanos , Interpretação de Imagem Assistida por Computador/métodos , New Hampshire
2.
AMIA Jt Summits Transl Sci Proc ; 2020: 211-220, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477640

RESUMO

Identifying patient characteristics that influence the rate of colorectal polyp recurrence can provide important insights into which patients are at higher risk for recurrence. We used natural language processing to extract polyp morphological characteristics from 953 polyp-presenting patients' electronic medical records. We used subsequent colonoscopy reports to examine how the time to polyp recurrence (731 patients experienced recurrence) is influenced by these characteristics as well as anthropometric features using Kaplan-Meier curves, Cox proportional hazards modeling, and random survival forest models. We found that the rate of recurrence differed significantly by polyp size, number, and location and patient smoking status. Additionally, right-sided colon polyps increased recurrence risk by 30% compared to left-sided polyps. History of tobacco use increased polyp recurrence risk by 20% compared to never-users. A random survival forest model showed an AUC of 0.65 and identified several other predictive variables, which can inform development of personalized polyp surveillance plans.

3.
JAMA Netw Open ; 3(4): e203398, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32324237

RESUMO

Importance: Histologic classification of colorectal polyps plays a critical role in screening for colorectal cancer and care of affected patients. An accurate and automated algorithm for the classification of colorectal polyps on digitized histopathologic slides could benefit practitioners and patients. Objective: To evaluate the performance and generalizability of a deep neural network for colorectal polyp classification on histopathologic slide images using a multi-institutional data set. Design, Setting, and Participants: This prognostic study used histopathologic slides collected from January 1, 2016, to June 31, 2016, from Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, with 326 slides used for training, 157 slides for an internal data set, and 25 for a validation set. For the external data set, 238 slides for 179 distinct patients were obtained from 24 institutions across 13 US states. Data analysis was performed from April 9 to November 23, 2019. Main Outcomes and Measures: Accuracy, sensitivity, and specificity of the model to classify 4 major colorectal polyp types: tubular adenoma, tubulovillous or villous adenoma, hyperplastic polyp, and sessile serrated adenoma. Performance was compared with that of local pathologists' at the point of care identified from corresponding pathology laboratories. Results: For the internal evaluation on the 157 slides with ground truth labels from 5 pathologists, the deep neural network had a mean accuracy of 93.5% (95% CI, 89.6%-97.4%) compared with local pathologists' accuracy of 91.4% (95% CI, 87.0%-95.8%). On the external test set of 238 slides with ground truth labels from 5 pathologists, the deep neural network achieved an accuracy of 87.0% (95% CI, 82.7%-91.3%), which was comparable with local pathologists' accuracy of 86.6% (95% CI, 82.3%-90.9%). Conclusions and Relevance: The findings suggest that this model may assist pathologists by improving the diagnostic efficiency, reproducibility, and accuracy of colorectal cancer screenings.


Assuntos
Pólipos do Colo/diagnóstico , Pólipos do Colo/patologia , Interpretação de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Algoritmos , Aprendizado Profundo , Histocitoquímica , Humanos , Sensibilidade e Especificidade
4.
J Pathol Inform ; 10: 7, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984467

RESUMO

CONTEXT: Celiac disease (CD) prevalence and diagnosis have increased substantially in recent years. The current gold standard for CD confirmation is visual examination of duodenal mucosal biopsies. An accurate computer-aided biopsy analysis system using deep learning can help pathologists diagnose CD more efficiently. SUBJECTS AND METHODS: In this study, we trained a deep learning model to detect CD on duodenal biopsy images. Our model uses a state-of-the-art residual convolutional neural network to evaluate patches of duodenal tissue and then aggregates those predictions for whole-slide classification. We tested the model on an independent set of 212 images and evaluated its classification results against reference standards established by pathologists. RESULTS: Our model identified CD, normal tissue, and nonspecific duodenitis with accuracies of 95.3%, 91.0%, and 89.2%, respectively. The area under the receiver operating characteristic curve was >0.95 for all classes. CONCLUSIONS: We have developed an automated biopsy analysis system that achieves high performance in detecting CD on biopsy slides. Our system can highlight areas of interest and provide preliminary classification of duodenal biopsies before review by pathologists. This technology has great potential for improving the accuracy and efficiency of CD diagnosis.

5.
Sci Rep ; 9(1): 3358, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833650

RESUMO

Classification of histologic patterns in lung adenocarcinoma is critical for determining tumor grade and treatment for patients. However, this task is often challenging due to the heterogeneous nature of lung adenocarcinoma and the subjective criteria for evaluation. In this study, we propose a deep learning model that automatically classifies the histologic patterns of lung adenocarcinoma on surgical resection slides. Our model uses a convolutional neural network to identify regions of neoplastic cells, then aggregates those classifications to infer predominant and minor histologic patterns for any given whole-slide image. We evaluated our model on an independent set of 143 whole-slide images. It achieved a kappa score of 0.525 and an agreement of 66.6% with three pathologists for classifying the predominant patterns, slightly higher than the inter-pathologist kappa score of 0.485 and agreement of 62.7% on this test set. All evaluation metrics for our model and the three pathologists were within 95% confidence intervals of agreement. If confirmed in clinical practice, our model can assist pathologists in improving classification of lung adenocarcinoma patterns by automatically pre-screening and highlighting cancerous regions prior to review. Our approach can be generalized to any whole-slide image classification task, and code is made publicly available at https://github.com/BMIRDS/deepslide .


Assuntos
Adenocarcinoma de Pulmão/classificação , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Redes Neurais de Computação , Adenocarcinoma de Pulmão/cirurgia , Automação , Aprendizado Profundo , Técnicas Histológicas/métodos , Humanos , Neoplasias Pulmonares/classificação , Patologistas
6.
Cancer Cytopathol ; 127(2): 98-115, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30702803

RESUMO

BACKGROUND: The Paris System for Urine Cytopathology (the Paris System) has succeeded in making the analysis of liquid-based urine preparations more reproducible. Any algorithm seeking to automate this system must accurately estimate the nuclear-to-cytoplasmic (N:C) ratio and produce a qualitative "atypia score." The authors propose a hybrid deep-learning and morphometric model that reliably automates the Paris System. METHODS: Whole-slide images (WSI) of liquid-based urine cytology specimens were extracted from 51 negative, 60 atypical, 52 suspicious, and 54 positive cases. Morphometric algorithms were applied to decompose images to their component parts; and statistics, including the NC ratio, were tabulated using segmentation algorithms to create organized data structures, dubbed rich information matrices (RIMs). These RIM objects were enhanced using deep-learning algorithms to include qualitative measures. The augmented RIM objects were then used to reconstruct WSIs with filtering criteria and to generate pancellular statistical information. RESULTS: The described system was used to calculate the N:C ratio for all cells, generate object classifications (atypical urothelial cell, squamous cell, crystal, etc), filter the original WSI to remove unwanted objects, rearrange the WSI to an efficient, condensed-grid format, and generate pancellular statistics containing quantitative/qualitative data for every cell in a WSI. In addition to developing novel techniques for managing WSIs, a system capable of automatically tabulating the Paris System criteria also was generated. CONCLUSIONS: A hybrid deep-learning and morphometric algorithm was developed for the analysis of urine cytology specimens that could reliably automate the Paris System and provide many avenues for increasing the efficiency of digital screening for urine WSIs and other cytology preparations.


Assuntos
Citodiagnóstico/métodos , Aprendizado Profundo , Urinálise/métodos , Algoritmos , Automação , Citodiagnóstico/instrumentação , Humanos , Urinálise/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA