Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(58): 7455-7458, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38946627

RESUMO

MnCo spinel oxide catalysts were successfully synthesized by the calcination of bimetallic Mn/Co-MOFs as sacrificial templates. The derived catalysts exhibited optimal catalytic activity, reusability and thermal stability for toluene oxidation, which was ascribed to their large specific surface area, higher number of octahedral metal ions and the weakest metal-oxygen bonds.

2.
Polymers (Basel) ; 16(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000771

RESUMO

Quickly sensing humidity changes is required in some fields, such as in fuel cell vehicles. The micro humidity sensor used for the relative humidity (RH) measurement with fast response characteristics, and its numerical model and method are rare. This paper firstly presents a numerical model and method for a parallel plate capacitor and a numerical analysis of its dynamic characteristics. The fabrication of this sensor was carried out based on the numerical results, and, the main characteristics of its moisture-sensitive element are shown. This parallel plate capacitor is made using complementary metal-oxide semiconductor (CMOS)-compatible technology, with a P-type monocrystalline silicon wafer used as the substrate, a thin polyimide film (PI) between the upper grid electrode and the lower parallel plate electrode, and electrodes with a molybdenum-aluminum bilayer structure. The shape of the micro sensor is square with 3 mm on the side of the source field. The humidity sensor has a linearity of 0.9965, hysteresis at 7.408% RH, and a sensitivity of 0.4264 pF/%RH. The sensor displays an average adsorption time of 1 s and a minimum adsorption time of 850 ms when the relative humidity increases from 33.2% RH to 75.8% RH. The sensor demonstrates very good stability during a 240 h test in a 25 °C environment. The numerical model and method provided by this study are very useful for predicting the performance of a parallel plate capacitor.

3.
Langmuir ; 40(16): 8654-8664, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38588599

RESUMO

Biofouling and bacterial infections are significant challenges in biomedical devices. In this study, a biocompatible dual-functional coating with antimicrobial and antifouling properties is developed by co-depositing the zwitterionic copolymer and silver nanoparticles via a dopamine-assisted strategy. Inspired by mussel adhesion, the coating exhibits substrate-independent adhesion as a result of the formation of irreversible covalent bonds. The zwitterionic copolymer in the dual coating plays a crucial role in improving surface wettability and reducing protein adsorption and platelet and bacterial adhesion, thereby improving its antifouling property significantly. The silver nanoparticles reduced by self-polymerized polydopamine without the addition of any chemical reductants can effectively improve the antimicrobial activity. Furthermore, as the zwitterion content in the zwitterion polymer increases, the antibacterial and antifouling properties of the coating can be further advanced. The simple and effective approach presented here provides a promising pathway for constructing potent antibacterial and antifouling surfaces, demonstrating great potential for clinical applications in implanted materials.

4.
J Colloid Interface Sci ; 665: 898-910, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38564954

RESUMO

The construction of metal-organic frameworks (MOFs) with highly efficient capture for volatile organic compounds (VOCs) adsorption under humid conditions is a significant yet formidable task. Herein, series of fluorinated UiO-67 modified with trifluoroacetic acid (TFA) and 4-fluorobenzoic acid were successfully synthesized for VOCs adsorption under high humidity conditions. Experiments results showed that UiO-67 modified with 4-fluorobenzoic acid (67-F) presented excellent adsorption capacity of 345 mg/g for toluene adsorption and exhibited great water resistance (10.0 vol% H2O, 374 mg/g toluene adsorption capacity). Characterization results indicated that the introduction of 4-fluorobenzoic acid induced the competitive coordination between 4-fluorobenzoic acid and 4,4-biphenyl dicarboxylic acid (BPDC) with Zr4+, causing the formation of abundant defects to provide extra adsorption sites. Meanwhile, the benzene ring in 4-fluorobenzoic acid enhanced the π-π conjugation, causing the further promotion of VOCs adsorption capacity. More importantly, the water resistance mechanism was investigated and elucidated that the introduction of F decreased the surface energy of 67-F and its affinity with water. Meanwhile, the metal complex induced by the fluorinated modification produced an electron-dense pore environment, which greatly improved its chemical and water stability. This work provided a strategy for preparing an adsorbent with high water resistance for real-world VOCs adsorption at high humidity conditions.

5.
J Transl Med ; 21(1): 491, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480086

RESUMO

BACKGROUND: The pathogenic mechanisms shared between kidney stones and diabetes at the transcriptional level remain elusive, and the molecular mechanisms by which resveratrol exerts its protective effects against these conditions require further investigation. METHODS: To address these gaps in knowledge, we conducted a comprehensive analysis of microarray and RNA-seq datasets to elucidate shared biomarkers and biological pathways involved in the pathogenesis of kidney stones and diabetes. An assortment of bioinformatic approaches was employed to illuminate the common molecular markers and associated pathways, thereby contributing to the identification of innovative therapeutic targets. Further investigation into the molecular mechanisms of resveratrol in preventing these conditions was conducted using molecular docking simulation and first-principles calculations. RESULTS: The study identified 11 potential target genes associated with kidney stones and diabetes through the intersection of genes from weighted gene co-expression network analysis (WGCNA) and differentially expressed genes (DEGs) screening. Among these, Interleukin 11 (IL11) emerged as a pivotal hub gene and a potential diagnostic biomarker for both conditions, particularly in males. Expression analysis of IL11 demonstrated elevated levels in kidney stones and diabetes groups compared to controls. Additionally, IL11 exhibited correlations with specific cell types and differential expression in normal and pathological conditions. Gene set enrichment analysis (GSEA) highlighted significant disparities in biological processes, pathways, and immune signatures associated with IL11. Moreover, molecular docking simulation of resveratrol towards IL11 and a first-principles investigation of Ca adsorption on the resveratrol surface provided structural evidence for the development of resveratrol-based drugs for these conditions. CONCLUSIONS: Overall, this investigation illuminates the discovery of common molecular mechanisms underlying kidney stones and diabetes, unveils potential diagnostic biomarkers, and elucidates the significance of IL11 in these conditions. It also provides insights into IL11 as a promising therapeutic target and highlights the role of resveratrol. Nonetheless, further research is warranted to enhance our understanding of IL11 targeting mechanisms and address any limitations in the study.


Assuntos
Diabetes Mellitus , Cálculos Renais , Masculino , Humanos , Interleucina-11 , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Simulação de Acoplamento Molecular , Cálculos Renais/tratamento farmacológico , Cálculos Renais/genética , Biomarcadores
6.
Environ Technol ; 44(10): 1405-1414, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34779747

RESUMO

In this research, chitosan-decorated activated carbon (AC-CS) was proposed. The AC was cross-linked with glutaraldehyde to prepare an adsorbent (AC-CS). The AC-CS has a rough surface. Adding the AC-CS directly to the dye solution can achieve simple and convenient removal of anionic azo dyes acid red 18 (AR-18). In the dye solution, the AC-CS was used as an adsorbent. The effects of pH, contact time, temperature, initial concentration of AR-18 and the AC-CS dosage on the adsorption efficiency were investigated. Full kinetic and isotherm analyses were also undertaken. In addition, the reusability of the AC-CS was evaluated, and the results showed that the removal rate of AR18 after regeneration remained relatively stable, above 90%. This experiment has shown that AC-CS is a promising anionic azo dye adsorbent.


Assuntos
Quitosana , Poluentes Químicos da Água , Quitosana/química , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Adsorção , Compostos Azo/química , Corantes/química , Poluentes Químicos da Água/química , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA