Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuropharmacology ; 254: 109992, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723742

RESUMO

Chronic primary pain, characterized by overlapping symptoms of chronic pain, anxiety, and depression, is strongly associated with stress and is particularly prevalent among females. Recent research has convincingly linked epigenetic modifications in the medial prefrontal cortex (mPFC) to chronic pain and chronic stress. However, our understanding of the role of histone demethylation in the mPFC in chronic stress-induced pain remains limited. In this study, we investigated the function of lysine-specific histone demethylase 1A (KDM1A/LSD1) in the context of chronic overlapping pain comorbid with anxiety and depression in female mice. We employed a chronic variable stress model to induce pain hypersensitivity in the face and hindpaws, as well as anxiety-like and depression-like behaviors, in female mice. Our findings revealed that chronic stress led to a downregulation of KDM1A mRNA and protein expression in the mPFC. Notably, overexpressing KDM1A in the mPFC alleviated the pain hypersensitivity, anxiety-like behaviors, and depression-like behaviors in female mice, without affecting basal pain responses or inducing emotional distress. Conversely, conditional knockout of KDM1A in the mPFC exacerbated pain sensitivity and emotional distress specifically in females. In summary, this study highlights the crucial role of KDM1A in the mPFC in modulating chronic stress-induced overlapping pain, anxiety, and depression in females. Our findings suggest that KDM1A may serve as a potential therapeutic target for treating chronic stress-related overlap pain and associated negative emotional disorders.

2.
Life Sci ; 332: 122088, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37730112

RESUMO

AIMS: Epigenetic regulation is implicated in the neurogenesis of neuropathic pain. The repressor element 1 (RE1) silencing transcription factor (REST) corepressor (CoREST) proteins function as corepressors in the REST complex and/or LSD1 epigenetic complex. In the current study, we aimed to find the expression profile of CoREST1 in the dorsal root ganglion (DRG) and investigate whether it plays a role in neuropathic pain. MAIN METHODS: The evoked pain behaviors in mice were examined by the von Frey test and thermal test in a spinal nerve ligation (SNL)-induced neuropathic pain mice model. CoREST1 siRNA or virus was administered by DRG microinjection or intrathecal injection. The CoREST1 expression in DRGs was examined by immunofluorescence, quantitative PCR, Western blotting, and co-immunoprecipitation. KEY FINDINGS: CoREST1 was non-selectively expressed in large, medium, and small DRG neurons, and it exclusively colocalized with LSD1. In neuropathic pain models, peripheral nerve injury induced the upregulation of CoREST1 and increased binding of CoREST1 with LSD1 in injured DRGs in male mice. Furthermore, CoREST1 siRNA prevented the development of SNL-induced pain hypersensitivity as well as led to the reduction of established pain hypersensitivity during the maintenance period in SNL mice. Conversely, the overexpression of CoREST1 in DRGs by in vivo transfection of virus-induced pain hypersensitivity in naive mice. SIGNIFICANCE: Our study demonstrated that CoREST1, along with LSD1, was expressed in primary sensory neurons specifically in response to nerve injury, and promoted nociceptive pain hypersensitivity in mice. Thus, CoREST1 might serve as a potential target for treating neuropathic pain.

3.
Neuropharmacology ; 224: 109372, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36502869

RESUMO

Apolipoprotein E (ApoE) is an apolipoprotein involved in lipid metabolism and is primarily responsible for lipid transport and cholesterol homeostasis in the central nervous system (CNS). The aim of this study is to explore the role of ApoE in the pathological development of neuropathic pain. First, we examined the location of ApoE in the dorsal root ganglion (DRG) and spinal cord in male mice using immunohistochemistry, and found that ApoE was predominantly expressed in DRG satellite glial cells (SGCs) and macrophages and spinal cord astrocytes. Using a spinal nerve ligation (SNL)-induced neuropathic pain mouse model, we found that nerve injury caused an increase in ApoE expression in the injured DRGs, but not in the spinal cord after SNL surgery. Furthermore, we observed reduced SNL-induced pain hypersensitivity in ApoE knockout mice compared to wild-type mice. Moreover, an antisense oligonucleotide (ASO) targeting the Apoe gene sequence, which was microinjected into the DRG or administered intrathecally, not only reduced ApoE expression in DRG but also attenuated SNL-induced pain hypersensitivity. Finally, we found that a tyrosine kinase receptor AXL, which was previously demonstrated to contribute to neuropathic pain, may mediate ApoE function under neuropathic pain condition. In conclusion, our data suggest that ApoE in DRG promote pain hypersensitivity via the DRG membrane receptor AXL in neurons under neuropathic pain conditions. This study revealed a novel mechanism between lipid homeostasis and neuropathic pain.


Assuntos
Gânglios Espinais , Neuralgia , Animais , Masculino , Camundongos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Ratos Sprague-Dawley , Nervos Espinhais/lesões , Regulação para Cima , Ratos
4.
Brain Res Bull ; 191: 30-39, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36240908

RESUMO

Low back and radicular pain syndromes, usually caused by local inflammation and irritation to the nerve root and dorsal root ganglion (DRG), are common throughout medical practice, but sufficient pain relief is scarce. In this study, we employed a chronic compression of DRG (CCD)-induced radicular pain model in rats to explore whether lysine-specific demethylase 1 (LSD1), a histone demethylase and transcriptional co-repressor, is involved in the pathological process of radicular pain. We found that LSD1 was expressed in various-sized DRG neurons by immunohistochemistry. CCD induced the upregulation of LSD1 in compressed L4-L5 DRGs. Moreover, either LSD1 small interfering RNAs or LSD1 inhibitor attenuated CCD-induced pain hypersensitivities. LSD1 was also upregulated in the injured lumbar 4 (L4) DRG in a spinal nerve ligation (SNL)-induced neuropathic pain mouse model. Nevertheless, LSD1 was not altered in L3-L5 DRGs in complete Freund's adjuvant-induced inflammatory pain mouse model, paclitaxel- or streptozotocin-induced neuropathic pain models. Furthermore, knockdown of LSD1 in the injured L4 DRG reversed SNL-induced pain hypersensitivities in mice. Therefore, we speculate that nerve injury induced the upregulation of LSD1 in the injured DRGs, which contributes to neuropathic pain hypersensitivities; thus, LSD1 may serve as a potential target for the treatment of radicular pain and neuropathic pain.


Assuntos
Hipersensibilidade , Neuralgia , Ratos , Camundongos , Animais , Gânglios Espinais/patologia , Lisina , Ratos Sprague-Dawley , Neuralgia/patologia , Nervos Espinhais/lesões , Modelos Animais de Doenças , Hipersensibilidade/complicações , Hipersensibilidade/patologia , Células Receptoras Sensoriais , Hiperalgesia/patologia
5.
Front Mol Neurosci ; 15: 990260, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117915

RESUMO

The microtubule-stabilizing drug paclitaxel (PTX) is a chemotherapeutic agent widely prescribed for the treatment of various tumor types. The main adverse effect of PTX-mediated therapy is chemotherapy-induced peripheral neuropathy (CIPN) and neuropathic pain, which are similar to the adverse effects associated with other chemotherapeutic agents. Dorsal root ganglia (DRG) contain primary sensory neurons; any damage to these neurons or their axons may lead to neuropathic pain. To gain molecular and neurobiological insights into the peripheral sensory system under conditions of PTX-induced neuropathic pain, we used transcriptomic analysis to profile mRNA and non-coding RNA expression in the DRGs of adult male C57BL/6 mice treated using PTX. RNA sequencing and in-depth gene expression analysis were used to analyze the expression levels of 67,228 genes. We identified 372 differentially expressed genes (DEGs) in the DRGs of vehicle- and PTX-treated mice. Among the 372 DEGs, there were 8 mRNAs, 3 long non-coding RNAs (lncRNAs), 16 circular RNAs (circRNAs), and 345 microRNAs (miRNAs). Moreover, the changes in the expression levels of several miRNAs and circRNAs induced by PTX have been confirmed using the quantitative polymerase chain reaction method. In addition, we compared the expression levels of differentially expressed miRNAs and mRNA in the DRGs of mice with PTX-induced neuropathic pain against those evaluated in other models of neuropathic pain induced by other chemotherapeutic agents, nerve injury, or diabetes. There are dozens of shared differentially expressed miRNAs between PTX and diabetes, but only a few shared miRNAs between PTX and nerve injury. Meanwhile, there is no shared differentially expressed mRNA between PTX and nerve injury. In conclusion, herein, we show that treatment with PTX induced numerous changes in miRNA expression in DRGs. Comparison with other neuropathic pain models indicates that DEGs in DRGs vary greatly among different models of neuropathic pain.

6.
Neuroscience ; 426: 168-178, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846751

RESUMO

Paclitaxel (PTX) is one of the most commonly used chemotherapeutic agents for various cancer diseases. Despite its advantages, PTX also causes behavioral deficits related to nervous-system dysfunction, such as neuropathic pain, depression, anxiety, and cognitive impairments. The prefrontal cortex (PFC) is one of the areas that is susceptible to adverse effects of chemotherapeutic agents. Therefore, the present study was designed to examine sex-biased behavioral deficits and whole-transcriptome changes in gene expression in the PFC of mice treated with vehicle or PTX. In this study, PTX (4 mg/kg) was injected intraperitoneally four times in mice every other day. Three weeks later, both PTX-treated male and female mice developed mechanical pain hypersensitivities, as indicated by increased paw withdrawal responses to 0.16-g von Frey filaments. Additionally, PTX-treated mice exhibited depression-like symptoms, as they exhibited increased immobility times in the forced swim test. PTX also induced cognitive impairment, as demonstrated via results of a novel object recognition (NOR) test and anxiety-like behavior in an elevated plus-maze test in male mice, but not in female mice. RNA sequencing and in-depth gene expression analysis of the PFC in paired vehicle and PTX-treated mice showed that PTX induced 1755 differentially expressed genes in the PFCs of male and female mice. Quantitative real-time RT-PCR verified that some gene expressions in the medial PFC (mPFC) were related to neurotransmission. In conclusion, this study identified a sex-biased effect of PTX on PFC function and gene expression, which provides a foundation for future studies to explore the precise mechanisms of PTX-induced behavioral deficits.


Assuntos
Transtorno Depressivo/tratamento farmacológico , Expressão Gênica/efeitos dos fármacos , Paclitaxel/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Ansiedade/tratamento farmacológico , Depressão/tratamento farmacológico , Transtorno Depressivo/fisiopatologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos Endogâmicos C57BL , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Córtex Pré-Frontal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA